Skip to main content

Formulation and Evaluation of Nanoenhanced Anti-bacterial Calcium Phosphate Bone Cements

  • Chapter
  • First Online:

Abstract

Post-operative complications due to infections are the most common problems that occur following dental and orthopedic implant surgeries and bone repair procedures. Blood samples randomly collected from postmortem donors showed a 26% bacterial contamination rate. Preventing post-surgical infections is therefore a critical need that current polymethyl methacrylate bone cements fail to address. Current clinical practice uses direct impregnation of antibiotics in the bone cement mixture and applying the antibiotic-laden cement to the implant or fracture site. However, the addition of antibiotics results in reduced mechanical properties in the bone cement. Furthermore, the release of the antibiotic is short-lived and results in less than maximal antibiotic release. Calcium phosphate cements are unique in their ability to crystallize calcium and phosphate salt into hydroxyapatite and hence are naturally osteoconductive. Due to its low mechanical strength, its use in implant fixation, bone grafts and bone repair is limited to non-load bearing applications. The present work employs clay nanotubes as a means for developing enhanced mechanical properties in calcium phosphate cements as well as the sustained release of gentamicin and neomycin, two commonly used antibiotics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Downey P, Siegel MI. Bone biology and the clinical implications for osteoporosis. Phys Ther. 2006;86(1):77–91.

    Article  PubMed  Google Scholar 

  2. Kalfas IH. Principles of bone healing. Neurosurg Focus. 2001;10(4):7–10.

    Article  Google Scholar 

  3. J. C. J. Webb, R. F. Spencer, (2007) The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. Journal of Bone and Joint Surgery - British Volume 89-B (7):851–857

    Google Scholar 

  4. Ture Kindt-Larsen, Daniel B. Smith, Jørgen Steen Jensen, (1995) Innovations in acrylic bone cement and application equipment. Journal of Applied Biomaterials 6 (1):75–83

    Google Scholar 

  5. Hahn M, Vogel M, Pompesius-Kempa M, Delling G. Trabecular bone pattern factor—a new parameter for simple quantification of bone microarchitecture. Bone. 1992;13(4):327–30.

    Article  CAS  PubMed  Google Scholar 

  6. Stańczyk M, van Rietbergen B. Thermal analysis of bone cement polymerisation at the cement-bone interface. J Biomech. 2004;37(12):1803–10.

    Article  PubMed  Google Scholar 

  7. Sommerfeldt DW, Rubin CT. Biology of bone and how it orchestrates the form and function of the skeleton. Eur Spine J. 2001;10:S86–95.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liebschner M, Wettergreen M. Optimization of bone scaffold engineering for load bearing applications. In: Ashammakhi N, Ferretti P, editors. Topics in tissue engineering, vol. 1, chapter 6. Oulu: University of Oulu; 2003. p. 1–39.

    Google Scholar 

  9. Stevens MM. Biomaterials for bone tissue engineering. Mater Today. 2008;11(5):18–25.

    Article  CAS  Google Scholar 

  10. Pohl AP. Mechanical manipulation of fractures to enhance fracture healing. J. Bone Joint Surg. 2002;84-B(Suppl III):213–4.

    Google Scholar 

  11. Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am. 1984;66(3):397–402.

    Article  CAS  PubMed  Google Scholar 

  12. Beloti MM, Rosa AL. Osteoblast differentiation of human bone marrow cells under continuous and discontinuous treatment with dexamethasone. Braz Dent J. 2005;16(2):156–61.

    Article  PubMed  Google Scholar 

  13. Tjong SC. Synthesis and properties of nano-hydroxyapatite/ polymer nanocomposites for bone tissue engineering. Emirate of Sharjah: Bentham Science Publishers; 2012. p. 82–142.

    Google Scholar 

  14. http://www.surgeryencyclopedia.com/A-Ce/Bone-Grafting.html.

  15. Damien CJ, Parsons JR. Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater. 1991;2(3):187–208.

    Article  CAS  PubMed  Google Scholar 

  16. Schmitz JP, Hollinger JO, Milam SB. Reconstruction of bone using calcium phosphate bone cements: a critical review. J Oral Maxillofac Surg. 1999;57(9):1122–6.

    Article  CAS  PubMed  Google Scholar 

  17. Rimondini L, Fini M, Giardino R. The microbial infection of biomaterials: A challenge for clinicians and researchers. A short review. J Appl Biomater Biomech. 2005;3(1):1–10.

    CAS  PubMed  Google Scholar 

  18. Shen M, Kim Y. Osteoporotic vertebral compression fractures: a review of current surgical management techniques. Am J Orthop. 2007;36(5):241–8.

    PubMed  Google Scholar 

  19. Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma. 1989;3(3):192–5.

    Article  CAS  PubMed  Google Scholar 

  20. Matl FD, Obermeier A, Repmann S, Friess W, Stemberger A, Kuehn K-D. New anti-infective coatings of medical implants. Antimicrob Agents Chemother. 2008;52(6):1957–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bistolfi A, Massazza G, Verné E, Massè A, Deledda D, Ferraris S, Miola M, Galetto F, Crova M. Antibiotic-loaded cement in orthopedic surgery: A review. ISRN Orthop. 2011;2011:1–8.

    Article  Google Scholar 

  22. Lautenschlager EP, Jacobs JJ, Marshall GW, Meyer PR. Mechanical properties of bone cements containing large doses of antibiotic powders. J Biomed Mater Res. 1976;10(6):929–38.

    Article  CAS  PubMed  Google Scholar 

  23. Gomoll AH, Fitz W, Scott RD, Thornhill TS, Bellare A. Nanoparticulate fillers improve the mechanical strength of bone cement. Acta Orthop. 2008;79(3):421–7.

    Article  PubMed  Google Scholar 

  24. Sfeir C, Ho L. Fracture repair. In: Lieberman JR, Friedlaender GE, editors. Bone regeneration and repair. Totowa, NJ: Humana Press; 2005. p. 21–44.

    Chapter  Google Scholar 

  25. Perez RA, Kim H, Ginebra M-P. Polymeric additives to enhance the functional properties of calcium phosphate cements. J Tissue Eng. 2012;3(1):2041731412439555.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Deng D, Dong L, Xie Q. Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration. Mater Sci Eng C Mater Biol Appl. 2015;47:266–72. https://doi.org/10.1016/j.msec.2014.11.049. Epub 2014 Nov 14

    Article  Google Scholar 

  27. Aryaei A, Liu J, Jayatissa AH, Jayasuriya AC. Cross-linked chitosan improves the mechanical properties of calcium phosphate-chitosan cement. Mater Sci Eng C Mater Biol Appl. 2015;54:14–9. https://doi.org/10.1016/j.msec.2015.04.024. Epub 2015 Apr 22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tanase CE, Popa MI, Verestiuc L. Biomimetic bone scaffolds based on chitosan and calcium phosphates. Mater Lett. 2011;65:1681–3.

    Article  CAS  Google Scholar 

  29. Venkatesan J. Chitin and chitosan composites for bone tissue regeneration. Adv Good Nutri Res. 2014;73:59–81.

    CAS  Google Scholar 

  30. Bandyopadhyay A, Petersen J, Fielding G, Banerjee S, Bose S. ZnO, SiO2, and SrO doping in resorbable tricalcium phosphates: Influence on strength degradation, mechanical properties, and in vitro bone–cell material interactions. J Biomed Mater Res B. 2012;2012(100B):2203–12.

    Article  Google Scholar 

  31. Abdullayev E, Lvov Y. Halloysite clay nanotubes for controlled release of protective agents. J Nanosci Nanotechnol. 2011;11(11):10007–26.

    Article  CAS  PubMed  Google Scholar 

  32. Du M, Guo B, Jia D. Newly emerging applications of halloysite nanotubes: a review. Polym Int. 2010;59(5):574–82.

    CAS  Google Scholar 

  33. Lvov Y, Wang W, Zhang L, Fakhrullin R. Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater. 2016;28(6):1227–50. https://doi.org/10.1002/adma.201502341.

    Article  CAS  PubMed  Google Scholar 

  34. Kamble R, Ghag M, Gaikawad S, Panda BK. Review article halloysite nanotubes and applications: A review. J Adv Sci Res. 2012;3(2):25–9.

    Google Scholar 

  35. Wei W, Abdllayev E, Goeders A, Hollister A, Lvov Y, Mills DK. Clay nanotube/poly(methyl methacrylate) bone cement composite with sustained antibiotic release. Macromol Mater Eng. 2012;297:645–53.

    Article  CAS  Google Scholar 

  36. Schnieders J, Gbureck U, Thull R, Kissel T. Controlled release of gentamicin from calcium phosphate-poly(lactic acid-co-glycolic acid) composite bone cement. Biomaterials. 2006;27(23):4239–49.

    Article  CAS  PubMed  Google Scholar 

  37. Alvarez H, Castro C, Moujir L, Perera A, Delgado A, Soriano I, Évora C, Sánchez E. Efficacy of ciprofloxacin implants in treating experimental osteomyelitis. J Biomed Mater Res B Appl Biomater. 2008;85(1):93–104.

    Article  CAS  PubMed  Google Scholar 

  38. Sasaki T, Ishibashi Y, Katano H, Nagumo A, Toh S. In vitro elution of vancomycin from calcium phosphate cement. J Arthroplasty. 2005;20(8):1055–9.

    Article  PubMed  Google Scholar 

  39. Otsuka M, Nakahigashi Y, Matsuda Y, Fox JL, Higuchi WI, Sugiyama Y. Effect of geometrical cement size on in vitro and in vivo indomethacin release from self-setting apatite cement. J Control Release. 1998;52(3):281–9.

    Article  CAS  PubMed  Google Scholar 

  40. Tani T, Okada K, Takahashi S, Suzuki N, Shimada Y, Itoi E. Doxorubicin-loaded calcium phosphate cement in the management of bone and soft tissue tumors. In Vivo. 2006;20(1):55–60.

    CAS  PubMed  Google Scholar 

  41. Li D, Yang Z, Li X, Li Z, Li J, Yang J. A histological evaluation on osteogenesis and resorption of methotrexate-loaded calcium phosphate cement in vivo. Biomed Mater. 2010;5(2):25007.

    Article  PubMed  Google Scholar 

  42. Matsumoto T, Toyoda H, Dohzono S, Yasuda H, Wakitani S, Nakamura H, Takaoka K. Efficacy of interspinous process lumbar fusion with recombinant human bone morphogenetic protein-2 delivered with a synthetic polymer and β-tricalcium phosphate in a rabbit model. Eur Spine J. 2012;21(7):1338–45.

    Article  PubMed  Google Scholar 

  43. Wernike E, Montjovent MO, Liu Y, Wismeijer D, Hunziker EB, Siebenrock KA, Hofstetter W, Klenke FM. Vegf incorporated into calcium phosphate ceramics promotes vascularisation and bone formation in vivo. Eur Cells Mater. 2010;19:30–40.

    Article  CAS  Google Scholar 

  44. Blom EJ, Klein-Nulend J, Wolke JGC, van Waas M a J, Driessens FCM, Burger EH. Transforming growth factor-beta1 incorporation in a calcium phosphate bone cement: material properties and release characteristics. J Biomed Mater Res. 2002;59(2):265–72.

    Article  CAS  PubMed  Google Scholar 

  45. Luginbuehl V, Wenk E, Koch A, Gander B, Merkle HP, Meinel L. Insulin-like growth factor I-releasing alginate-tricalciumphosphate composites for bone regeneration. Pharm Res. 2005;22(6):940–50.

    Article  CAS  PubMed  Google Scholar 

  46. Damien E, Hing K, Saeed S, Revell PA. A preliminary study on the enhancement of the osteointegration of a novel synthetic hydroxyapatite scaffold in vivo. J Biomed Mater Res A. 2003;66(2):241–6.

    Article  PubMed  Google Scholar 

  47. Otsuka M, Matsuda Y, Baig AA, Chhettry A, Higuchi WI. Calcium-level responsive controlled drug delivery from implant dosage forms to treat osteoporosis in an animal model. Adv Drug Deliv Rev. 2000;42(3):249–58.

    Article  CAS  PubMed  Google Scholar 

  48. Jindong Z, Hai T, Junchao G, Bo W, Li B, Qiang WB. Evaluation of a novel osteoporotic drug delivery system in vitro: alendronate-loaded calcium phosphate cement. Orthopedics. 2010;33(8). https://doi.org/10.3928/01477447-20100625-15.

    Google Scholar 

  49. Banerjee SS, Tarafder S, Davies NM, Bandyopadhyay A, Bose S. Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of β-TCP ceramics. Acta Biomater. 2010;6(10):4167–74.

    Article  CAS  PubMed  Google Scholar 

  50. Tanzawa Y, Tsuchiya H, Shirai T, Nishida H, Hayashi K, Takeuchi A, Kawahara M, Tomita K. Potentiation of the antitumor effect of calcium phosphate cement containing anticancer drug and caffeine on rat osteosarcoma. J Orthop Sci. 2011;16(1):77–84.

    Article  CAS  PubMed  Google Scholar 

  51. Sun l, Boyer C, Grimes R, Mills DK. Drug coated clay nanoparticles for delivery of chemotherapeutics. Curr Nanosci. 2016;12(2):207–14.

    Article  CAS  Google Scholar 

  52. Karnik S, Mills DK. Nanoenhanced hydrogel system with sustained release capabilities. J Biomed Mater Res A. 2015;103(7):2416–26.

    Article  CAS  PubMed  Google Scholar 

  53. Wu W, Cao X, Luo J, He G, Zhang Y. Morphology, thermal, and mechanical properties of poly(butylene succinate) reinforced with halloysite nanotube. Polym Compos. 2014;35:847–55.

    Article  CAS  Google Scholar 

  54. Lecouvet B, Gutierrez J, Sclavons M, Bailly C. Structure property relationships in polyamide 12/halloysite nanotube nanocomposites. Polym Degrad Stab. 2011;96:226–35.

    Article  CAS  Google Scholar 

  55. Guo B, Chen F, Lei Y, Liu X, Wan J, Jia D. Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by sorbic acid. Appl Surf Sci. 2009;255:7329–36.

    Article  CAS  Google Scholar 

  56. Deng S, Zhang J, Ye L. Halloysite–epoxy nanocomposites with improved particle dispersion through ball mill homogenisation and chemical treatment. Compos Sci Technol. 2009;69:2497–505.

    Article  CAS  Google Scholar 

  57. Liu M, Zhang Y, Wu C, Xiong S, Zhou C. Chitosan/halloysite nanotubes bionanocomposites: Structure, mechanical properties and biocompatibility. Int J Biol Macromol. 2012;51:566–75.

    Article  CAS  PubMed  Google Scholar 

  58. Jge H, Jr VH, Hc M, Hj B. Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials. 2004;25(3):1–24.

    Google Scholar 

  59. Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, Logroscino G. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med. 2014;25(10):2445–61. https://doi.org/10.1007/s10856-014-5240-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thornes B, Murray P, Bouchier-Hayes D. Development of resistant strains of Staphylococcus epidermidis on gentamicin-loaded bone cement in vivo. J Bone Joint Surg Br. 2002;84:758–60.

    Article  Google Scholar 

  61. Zwingenberger S, Nich C, Valladares RD, Yao Z, Stiehler M, Goodman SB. Recommendations and considerations for the use of biologics in orthopedic surgery. BioDrugs. 2012;26(4):245–56. https://doi.org/10.2165/11631680-000000000-00000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Campoccia D, Montanaro L, Speziale P, Arciola CR. Antibiotic-loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use. Biomaterials. 2010;31:6363–77.

    Article  CAS  PubMed  Google Scholar 

  63. Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y. Nanomaterials and bone regeneration. Bone Res. 2015;3:15029. https://doi.org/10.1038/boneres.2015.29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kretlow JD, Mikos AG. Review: mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue Eng. 2007;13:927–38.

    Article  CAS  PubMed  Google Scholar 

  65. Soundrapandian C, Datta S, Sa B. Drug-eluting implants for osteomyelitis. Crit Rev Ther Drug Carrier Syst. 2006;24(6):493–545.

    Article  Google Scholar 

  66. Tsourvakas S. Local antibiotic therapy in the treatment of bone and soft tissue infections. In: Danilla S, editor. Selected topics in plastic reconstructive surgery. London: InTech; 2012. ISBN: 978-953-307-836-6.

    Google Scholar 

  67. Lu H, Liu Y, Guo J, Wu H, Wang J, Wu G. Biomaterials with antibacterial and osteoinductive properties to repair infected bone defects. Int J Mol Sci. 2016;17:334. https://doi.org/10.3390/ijms17030334.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zheng Z, Yin W, Zara JN, Li W, Kwak J, Mamidi R, Lee M, Siu RK, Ngo R, Wang J, et al. The use of BMP-2 coupled—nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects. Biomaterials. 2010;31:9293–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang Q, Yan J, Yang J, Bingyun Li B. Nanomaterials promise better bone repair. Mater Today. 2016;19(8):451–63.

    Article  CAS  Google Scholar 

  70. Tautzenberger A, Kovtun A, Ignatius A. Nanoparticles and their potential for application in bone. Int J Nanomed. 2012;7:4545–57. https://doi.org/10.2147/IJN.S34127.

    Article  CAS  Google Scholar 

  71. Beck GR, Ha S-W, Camalier CE, Yamaguchi M, Li Y, Lee J-K, Weitzmann MN. Bioactive silica based nanoparticles stimulate bone forming osteoblasts, suppress bone esorbing osteoclasts, and enhance bone mineral density in vivo. Nanomedicine. 2012;8(6):793–803. https://doi.org/10.1016/j.nano.2011.11.003.

    Article  CAS  PubMed  Google Scholar 

  72. Ha SW, Weitzmann M, Beck GR. Bioactive silica nanoparticles promote osteoblast differentiation through stimulation of autophagy and direct association with LC3 and p62. ACS Nano. 2014;8(6):5898–910. https://doi.org/10.1021/nn5009879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang Y, Wang X, Li H, Xue D, Shi Z, Qi Y, Ma Q, Pan Z. Assessing the character of the rhBMP-2-and vancomycin-loaded calcium sulphate composites in vitro and in vivo. Arch Orthop Trauma Surg. 2011;131:991–1001.

    Article  PubMed  Google Scholar 

  74. Katti KS, Katti DR, Dash R. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Biomed Mater. 2008;3:1–12.

    Article  Google Scholar 

  75. Mieszawska AJ, Llamas JG, Vaiana CA, Kadakia MP, Naik RR, Kaplan DL. Clay-enriched silk biomaterials for bone formation. Acta Biomater. 2011;7(8):3036–41. https://doi.org/10.1016/j.actbio.2011.04.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Karnik S, Jammalamadaka U, Tappa K, Mills DK. Performance evaluation of nanoclay enriched anti-microbial hydrogels for biomedical applications. Heliyon. 2016;2:e00072. https://doi.org/10.3390/app6090265.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Huang B, Liu M, Long Z, Shen Y, Zhou C. Effects of halloysite nanotubes on physical properties and cytocompatibility of alginate composite hydrogels. Mat Sci Eng C. 2017;70(1):303–10.

    Article  CAS  Google Scholar 

  78. Liu M, Wu C, Wu YJ, Xiong S, Zhou C. Chitosan–halloysite nanotubes nanocomposite scaffolds for tissue engineering. J Mater Chem B. 2013;1:2078–89.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Governor’s Biotechnology Initiative, The Enterprise Fund and the Opportunities for Partnerships in Technology with Industry (OPT-IN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. Mills .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tappa, K., Jammalamadaka, U., Mills, D.K. (2017). Formulation and Evaluation of Nanoenhanced Anti-bacterial Calcium Phosphate Bone Cements. In: Li, B., Webster, T. (eds) Orthopedic Biomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-73664-8_4

Download citation

Publish with us

Policies and ethics