Symbolic Powers of Ideals

  • Hailong Dao
  • Alessandro De Stefani
  • Eloísa Grifo
  • Craig Huneke
  • Luis Núñez-BetancourtEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 222)


We survey classical and recent results on symbolic powers of ideals. We focus on properties and problems of symbolic powers over regular rings, on the comparison of symbolic and regular powers, and on the combinatorics of the symbolic powers of monomial ideals. In addition, we present some new results on these aspects of the subject.


Symbolic powers Differential operators Uniform Symbolic Topologies Packing problem 



We thank Jeff Mermin for many helpful conversations concerning the packing problem, and in particular for discussions leading to Remark 4.19 and Corollary 4.20. We thank Jonathan Montaño, Andrew Conner, Jack Jeffries, and Robert Walker for helpful comments. Part of this work was done when the second and fifth authors were at the University of Virginia. They wish to thank this institution for its hospitality. Finally, the fifth author thanks the organizing committee for the ‘Brazil-Mexico 2nd meeting on Singularities’ in Salvador, Bahia, Brazil, where this project was initiated.


  1. 1.
    Akesseh, S.: Ideal containments under flat extensions. J. Algebra. 492, 44–51 (2017)Google Scholar
  2. 2.
    Àlvarez Montaner, J., Huneke, C., Núñez-Betancourt, L.: \(D\)-modules, Bernstein–Sato polynomials, and \(F\)-invariants of direct summands. Adv. Math. 321, 298–325 (2017). arXiv:1611.04412
  3. 3.
    Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley Publishing Co., Reading (1969)zbMATHGoogle Scholar
  4. 4.
    Baczyńska, M., Dumnicki, M., Habura, A., Malara, G., Pokora, P., Szemberg, T., Szpond, J., Tutaj-Gasińska, H.: Points fattening on \(\mathbb{P}^1\times \mathbb{P}^1\) and symbolic powers of bi-homogeneous ideals. J. Pure Appl. Algebra 218(8), 1555–1562 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berthelot, P.: Altérations de variétés algébriques (d’après A. J. de Jong). Astérisque 241, Exp. No. 815, 5, 273–311 (1997); Séminaire Bourbaki, Vol. 1995/96Google Scholar
  6. 6.
    Bocci, C., Harbourne, B.: Comparing powers and symbolic powers of ideals. J. Algebr. Geom. 19(3), 399–417 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bocci, C., Harbourne, B.: The resurgence of ideals of points and the containment problem. Proc. Am. Math. Soc. 138(4), 175–1190 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bocci, C., Cooper, S., Guardo, E., Harbourne, B., Janssen, M., Nagel, U., Seceleanu, A., Van Tuyl, A., Thanh, V.: The Waldschmidt constant for squarefree monomial ideals. J. Algebr. Combin. 44(4), 875–904 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Böger, E.: Differentielle und ganz-algebraische Abhängigkeit bei Idealen analytischer Algebren. Math. Z. 121, 188–189 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Brodmann, M.: Asymptotic stability of \({\rm {Ass}}(M/I^{n}M)\). Proc. Am. Math. Soc. 74(1), 16–18 (1979)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Chen, J., Morey, S., Sung, A.: The stable set of associated primes of the ideal of a graph. Rocky Mt. J. Math. 32(1), 71–89 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cornuéjols, G.: Combinatorial Optimization: Packing and Covering. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 74. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2001)CrossRefzbMATHGoogle Scholar
  13. 13.
    Cornuéjols, G., Conforti, M.: A decomposition theorem for balanced matrices. Integer Program. Comb. Optim. 74, 147–169 (1990)Google Scholar
  14. 14.
    Cornuéjols, G., Guenin, B., Margot, F.: The packing property. Math. Program. 89(1, Ser. A), 113–126 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dale Cutkosky, S.: Irrational asymptotic behaviour of Castelnuovo–Mumford regularity. J. Reine Angew. Math. 522, 93–103 (2000)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Dumnicki, M.: Containments of symbolic powers of ideals of generic points in \(\mathbb{P}^3\). Proc. Am. Math. Soc. 143(2), 513–530 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Dumnicki, M., Szemberg, T., Tutaj-Gasińska, H.: Counterexamples to the \(I^{(3)}\subseteq I^2\) containment. J. Algebra 393, 24–29 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Dumnicki, M., Harbourne, B., Szemberg, T., Tutaj-Gasińska, H.: Linear subspaces, symbolic powers and Nagata type conjectures. Adv. Math. 252, 471–491 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Dumnicki, M., Harbourne, B., Nagel, U., Seceleanu, A., Szemberg, T., Tutaj-Gasińska, H.: Resurgences for ideals of special point configurations in \(\mathbf{P}^N\) coming from hyperplane arrangements. J. Algebra 443, 383–394 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ein, L., Lazarsfeld, R., Smith, K.E.: Uniform bounds and symbolic powers on smooth varieties. Invent. Math. 144(2), 241–252 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Eisenbud, D.: Commutative Algebra: With a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)zbMATHGoogle Scholar
  22. 22.
    Eisenbud, D., Hochster, M.: A Nullstellensatz with nilpotents and Zariski’s main lemma on holomorphic functions. J. Algebra 58(1), 157–161 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Eisenbud, D., Mazur, B.: Evolutions, symbolic squares, and fitting ideals. J. Reine Angew. Math. 488, 189–201 (1997)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Fatabbi, G., Harbourne, B., Lorenzini, A.: Inductively computable unions of fat linear subspaces. J. Pure Appl. Algebra 219(12), 5413–5425 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Francisco, C.A., Hà, H.T., Van Tuyl, A.: Colorings of hypergraphs, perfect graphs, and associated primes of powers of monomial ideals. J. Algebra 331, 224–242 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Francisco, C.A., Mermin, J., Schweig, J.: A survey of Stanley–Reisner theory. Connections Between Algebra, Combinatorics, and Geometry, pp. 209–234. Springer, Berlin (2014)CrossRefGoogle Scholar
  27. 27.
    Gitler, I., Reyes, E., Villarreal, R.H.: Blowup algebras of ideals of vertex covers of bipartite graphs. Algebraic Structures and their Representations. Contemporary Mathematics, vol. 376, pp. 273–279. American Mathematical Society, Providence (2005)CrossRefGoogle Scholar
  28. 28.
    Gitler, I., Valencia, C., Villarreal, R.H.: A note on the Rees algebra of a bipartite graph. J. Pure Appl. Algebra 201(1–3), 17–24 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometryGoogle Scholar
  30. 30.
    Grifo, E., Huneke, C.: Symbolic powers of ideals defining F-pure and strongly F-regular rings. Int. Mat. Res. Not. (2017).
  31. 31.
    Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV. Inst. Hautes Études Sci. Publ. Math. 32, 361 (1967)zbMATHGoogle Scholar
  32. 32.
    Guardo, E., Harbourne, B., Van Tuyl, A.: Symbolic powers versus regular powers of ideals of general points in \(\mathbb{P}^1\times \mathbb{P}^1\). Canad. J. Math. 65(4), 823–842 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Harbourne, B., Huneke, C.: Are symbolic powers highly evolved? J. Ramanujan Math. Soc. 28A, 247–266 (2013)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Harbourne, B., Seceleanu, A.: Containment counterexamples for ideals of various configurations of points in \(\mathbf{P}^N\). J. Pure Appl. Algebra 219(4), 1062–1072 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Harbourne, B., Kapustka, M., Knutsen, A., Syzdek, W., Bauer, T., Di Rocco, S., Szemberg, T.: A primer on Seshadri constants. Contemp. Math. 496, 39–70 (2009)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Herzog, J., Tuân Hoa, L., Trung, N.V.: Asymptotic linear bounds for the Castelnuovo–Mumford regularity. Trans. Am. Math. Soc. 354(5), 1793–1809 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Hoa, L.T., Trung, T.N.: Partial Castelnuovo–Mumford regularities of sums and intersections of powers of monomial ideals. Math. Proc. Camb. Philos. Soc. 149(2), 229–246 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Hoa, L.T., Trung, T.N.: Castelnuovo–Mumford regularity of symbolic powers of two-dimensional squarefree monomial ideals. J. Commut. Algebra 8(1), 77–88 (2016)Google Scholar
  39. 39.
    Hochster, M., Huneke, C.: Tight closure in equal characteristic zero (1999)Google Scholar
  40. 40.
    Hochster, M.: Rings of invariants of tori, Cohen–Macaulay rings generated by monomials, and polytopes. Ann. Math. 2(96), 318–337 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Hochster, M., Huneke, C.: Comparison of symbolic and ordinary powers of ideals. Invent. Math. 147(2), 349–369 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Hübl, R.: Evolutions and valuations associated to an ideal. J. Reine Angew. Math. 517, 81–101 (1999)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Hübl, R.: Powers of elements and monomial ideals. Commun. Algebra 33(10), 3771–3781 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Hübl, R., Huneke, C.: Fiber cones and the integral closure of ideals. Collect. Math. 52(1), 85–100 (2001)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Huckaba, S.: Symbolic powers of prime ideals with applications to hypersurface rings. Nagoya Math. J. 113, 161–172 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Huneke, C.: Uniform bounds in Noetherian rings. Invent. Math. 107(1), 203–223 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Huneke, C.: Desingularizations and the uniform Artin–Rees theorem. J. Lond. Math. Soc. (2) 62(3), 740–756 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Huneke, C., Raicu, C.: Introduction to uniformity in commutative algebra. Commutative Algebra and Noncommutative Algebraic Geometry. Vol. I. Mathematical Sciences Research Institute Publications, vol. 67, pp. 163–190. Cambridge University Press, New York (2015)Google Scholar
  49. 49.
    Huneke, C., Ribbe, J.: Symbolic squares in regular local rings. Math. Z. 229(1), 31–44 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Huneke, C., Ulrich, B.: Powers of licci ideals. Commutative Algebra (Berkeley, CA, 1987). Mathematical Sciences Research Institute Publications, vol. 15, pp. 339–346. Springer, New York (1989)CrossRefGoogle Scholar
  51. 51.
    Huneke, C., Katz, D., Validashti, J.: Uniform equivalente of symbolic and adic topologies. Ill. J. Math. 53(1), 325–338 (2009)zbMATHGoogle Scholar
  52. 52.
    Huneke, C., Katz, D., Validashti, J.: Uniform symbolic topologies and finite extensions. J. Pure Appl. Algebra 219(3), 543–550 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Huy Tài Hà and Susan Morey: Embedded associated primes of powers of squarefree monomial ideals. J. Pure Appl. Algebra 214(4), 301–308 (2010)Google Scholar
  54. 54.
    Izumi, S.: A measure of integrity for local analytic algebras. Publ. Res. Inst. Math. Sci. 21(4), 719–735 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Kunz, E.: On Noetherian rings of characteristic \(p\). Am. J. Math. 98(4), 999–1013 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Kunz, E.: Kähler Differentials. Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig (1986)CrossRefzbMATHGoogle Scholar
  57. 57.
    Kurano, K., Roberts, P.C.: The positivity of intersection multiplicities and symbolic powers of prime ideals. Compos. Math. 122(2), 165–182 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Lam, H.M., Trung, N.V.: Associated primes of powers of edge ideals and ear decompositions of graphs (2015). arXiv:1506.01483
  59. 59.
    Ma, L., Schwede, K.: Perfectoid multiplier/test ideals in regular rings and bounds on symboic powers (2017). arxiv:1705.02300
  60. 60.
    Matsumura, H. Commutative algebra. 2nd edn. Mathematics Lecture note series, vol. 56, pp. Xv+313. Benjamin/Cummings Publishing Co., Inc., Reading, Mass., (1980). ISBN: 0-8053-7026-9Google Scholar
  61. 61.
    Mazur, B.: Deformations of Galois representations and Hecke algebras. Harvard Course Notes (1994)Google Scholar
  62. 62.
    McAdam, S.: Quintasymptotic primes and four results of Schenzel. J. Pure Appl. Algebra 47(3), 283–298 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra. Graduate Texts in Mathematics, vol. 227. Springer, New York (2005)zbMATHGoogle Scholar
  64. 64.
    Minh, N.C., Trung, N.V.: Corrigendum to Cohen-Macaulayness of monomial ideals and symbolic powers of Stanley–Reisner ideals [Adv. Math. 226(2), 1285–1306 (2011)] [mr2737785]. Adv. Math. 228(5), 2982–2983 (2011)Google Scholar
  65. 65.
    Minh, N.C., Trung, N.V.: Regularity of symbolic powers and Arboricity of matroids (2017). arXiv:1702.04491
  66. 66.
    Minh, N.C., Trung, N.V.: Cohen-Macaulayness of monomial ideals and symbolic powers of Stanley–Reisner ideals. Adv. Math. 226(2), 1285–1306 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    More, A.A.: A note on the Eisenbud–Mazur conjecture. J. Pure Appl. Algebra 219(7), 2740–2755 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Morey, S., Villarreal, R.H.: Edge ideals: algebraic and combinatorial properties. Progress in Commutative Algebra 1, pp. 85–126. de Gruyter, Berlin (2012)Google Scholar
  69. 69.
    Nagata, M.: Local Rings. Interscience (1962)Google Scholar
  70. 70.
    Rees, D.: Degree functions in local rings. Proc. Camb. Philos. Soc. 57, 1–7 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Roberts, P.C.: Multiplicities and Chern classes in local algebra. Cambridge Tracts in Mathematics, vol. 133. Cambridge University Press, Cambridge (1998)CrossRefzbMATHGoogle Scholar
  72. 72.
    Sather-Wagstaff, S.: Intersections of symbolic powers of prime ideals. J. Lond. Math. Soc. (2) 65(3), 560–574 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    Scheja, G., Storch, U.: Über differentielle Abhängigkeit bei Idealen analytischer Algebren. Math. Z. 114, 101–112 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    Schenzel, P.: Symbolic powers of prime ideals and their topology. Proc. Am. Math. Soc. 93(1), 15–20 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Schenzel, P.: Finiteness of relative Rees rings and asymptotic prime divisors. Math. Nachr. 129, 123–148 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    Serre, J.-P.: Local Algebra. Springer Monographs in Mathematics. Springer, Berlin (2000). (Translated from the French by CheeWhye Chin and revised by the author)CrossRefzbMATHGoogle Scholar
  77. 77.
    Sullivant, S.: Combinatorial symbolic powers. J. Algebra 319(1), 115–142 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    Swanson, I.: Powers of ideals. Primary decompositions, Artin–Rees lemma and regularity. Math. Ann. 307(2), 299–313 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    Swanson, I.: Linear equivalence of topologies. Math. Zeitschrift 234, 755–775 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    Szemberg, T., Szpond, J.: On the containment problem (2016). arXiv:1601.01308
  81. 81.
    Taylor, R., Wiles, A.: Ring-theoretic properties of certain Hecke algebras. Ann. Math. (2) 141(3), 553–572 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Terai, N., Trung, N.V.: Cohen-Macaulayness of large powers of Stanley–Reisner ideals. Adv. Math. 229(2), 711–730 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    Trung, N.V., Tuan, T.M.: Equality of ordinary and symbolic powers of Stanley–Reisner ideals. J. Algebra 328, 77–93 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  84. 84.
    Varbaro, M.: Symbolic powers and matroids. Proc. Am. Math. Soc. 139, 2357–2366 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    Waldschmidt, M.: Propriétés arithmétiques de fonctions de plusieurs variables. II. Séminaire Pierre Lelong (Analyse) année 1975/76. Lecture Notes in Mathematics, vol. 578, pp. 108–135. Springer, Berlin (1977)CrossRefGoogle Scholar
  86. 86.
    Walker, R.M.: Rational singularities and uniform symbolic topologies. Ill. J. Math. 60(2), 541–550 (2016)Google Scholar
  87. 87.
    Walker, R.M.: Uniform Harbourne–Huneke bounds via flat extensions (2016). arXiv:1608.02320
  88. 88.
    Walker, R.M.: Uniform symbolic topologies via multinomial expansions (2017). arXiv:1703.04530
  89. 89.
    Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math. (2) 141(3), 443–551 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  90. 90.
    Yassemi, S.: Weakly associated primes under change of rings. Commun. Algebra 26(6), 2007–2018 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  91. 91.
    Zariski, O.: A fundamental lemma from the theory of holomorphic functions on an algebraic variety. Ann. Mat. Pura Appl. 4(29), 187–198 (1949)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hailong Dao
    • 1
  • Alessandro De Stefani
    • 2
  • Eloísa Grifo
    • 3
  • Craig Huneke
    • 3
  • Luis Núñez-Betancourt
    • 4
    Email author
  1. 1.Department of MathematicsUniversity of KansasLawrenceUSA
  2. 2.Department of MathematicsUniversity of NebraskaLincolnUSA
  3. 3.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA
  4. 4.Centro de Investigación en MatemáticasGuanajuatoMexico

Personalised recommendations