Linking Gulf War Illness to Genome Instability, Somatic Evolution, and Complex Adaptive Systems

  • Henry H. Heng
  • Guo Liu
  • Sarah Regan
  • Christine J. Ye
Chapter

Abstract

Gulf War illness (GWI) is a chronic multi-symptom disorder impacting one-third of veterans of the 1991 Gulf War. Despite a rapid accumulation of experimental data from various fields, there is no commonly accepted mechanism of this condition. Both the complex etiology and diverse symptoms of GWI have complicated its clinical diagnoses and treatments. By comparing GWI to many other common and complex diseases, we realized that a better way to study GWI is to consider it as a complex adaptive system that follows the principles of somatic evolution. In this presentation, we share our story of identifying the “Gulf War-specific-stress-induced” and “genome instability-mediated” common mechanisms of GWI. Our analyses are useful for explaining the linkage between the diverse features of GWI and elevated genome instability, which further suggest a possible framework of genome alteration-mediated somatic evolution to understand common and complex diseases in general.

Notes

Acknowledgements

This article is part of a series of studies entitled “The mechanisms of somatic cell and organismal evolution.” This work was supported by a grant from the DOD (GW093028).

References

  1. 1.
    Research Advisory Committee. Gulf War illness and the health of Gulf War veterans: scientific findings and recommendations. Washington, DC: U.S. Government Printing Office; 2008.Google Scholar
  2. 2.
    Heng HH. Challenges and new strategies for Gulf War illness research. Environ Dis. 2016;1:118–25.CrossRefGoogle Scholar
  3. 3.
    Koslik HJ, Hamilton G, Golomb BA. Mitochondrial dysfunction in Gulf War illness revealed by 31Phosphorus Magnetic Resonance Spectroscopy: a case-control study. PloS One 2014;9:e92887.CrossRefGoogle Scholar
  4. 4.
    Craddock TJ, Harvey JM, Nathanson L, Barnes ZM, Klimas NG, Fletcher MA, Broderick G. Using gene expression signatures to identify novel treatment strategies in Gulf War illness. BMC Med Genomics 2015;8:36.Google Scholar
  5. 5.
    Parihar VK, Hattiangady B, Shuai B, Shetty AK. Mood and memory deficits in a model of Gulf War illness are linked with reduced neurogenesis, partial neuron loss, and mild inflammation in the hippocampus. Neuropsychopharmacology 2013;38(12):2348–62.CrossRefGoogle Scholar
  6. 6.
    White RF, Steele L, O’Callaghan JP, Sullivan K, Binns JH, Golomb BA, Bloom FE, Bunker JA, Crawford F, Graves JC, Hardie A, Klimas N, Knox M, Meggs WJ, Melling J, Philbert MA, Grashow R. Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: effects of toxicant exposures during deployment. Cortex 2016;74:449–75.CrossRefGoogle Scholar
  7. 7.
    Liu G, Ye CJ, Chowdhury SK, Abdallah BY, Horne SD, Nichols D, Heng HH. Detecting chromosome condensation defects in Gulf War illness patients. Cur Genomics 2018 (in press).Google Scholar
  8. 8.
    Heng HH. The genome-centric concept: resynthesis of evolutionary theory. Bioessays 2009;31(5):512–25.CrossRefGoogle Scholar
  9. 9.
    Heng HH. Debating cancer: the paradox in cancer research. Hackensack, NJ: World Scientific; 2015.Google Scholar
  10. 10.
    Heng HH, Liu G, Stevens JB, Bremer SW, Ye KJ, Abdallah BY, Horne SD, Ye CJ. Decoding the genome beyond sequencing: the new phase of genomic research. Genomics 2011;98:242–52.CrossRefGoogle Scholar
  11. 11.
    Discovery Channel. Discovery channel in 2007: Gulf War illness-conspiracy test. https://www.youtube.com/watch?v=jhvdkdMFVJQ.
  12. 12.
    Heng HH, Stevens JB, Liu G, Bremer SW, Ye KJ, Reddy PV, Wu GS, Wang YA, Tainsky MA, Ye CJ. Stochastic cancer progression driven by non-clonal chromosome aberrations. J Cell Physiol. 2006;208(2):461–72.CrossRefGoogle Scholar
  13. 13.
    Heng HH, Bremer SW, Stevens J, Ye KJ, Miller F, Liu G, Ye CJ. Cancer progression by non-clonal chromosome aberrations. J Cell Biochem. 2006;98(6):1424–35.CrossRefGoogle Scholar
  14. 14.
    Heng HH, Liu G, Bremer S, Ye KJ, Stevens J, Ye CJ. Clonal and non-clonal chromosome aberrations and genome variation and aberration. Genome 2006;49(3):195–204.CrossRefGoogle Scholar
  15. 15.
    Ye CJ, Lu W, Liu G, Bremer SW, Wang YA, Moens P, Hughes M, Krawetz SA, Heng HH. The combination of SKY and specific loci detection with FISH or immunostaining. Cytogenet Cell Genet. 2001;93(3–4):195–202.CrossRefGoogle Scholar
  16. 16.
    Heng HH, Ye CJ, Yang F, Ebrahim S, Liu G, Bremer SW, Thomas CM, Ye J, Chen TJ, Tuck-Miller C, Yu JW, Krawetz SA, Johnson A. Analysis of marker or complex chromosomal rearrangements present in pre- and post-natal karyotypes utilizing a combination of G-banding, spectral karyotyping and fluorescence in situ hybridization. Clin Genet. 2003;63(5):358–67.CrossRefGoogle Scholar
  17. 17.
    Ye CJ, Stevens JB, Liu G, Ye KJ, Yang F, Bremer SW, Heng HH. Combined multicolor-FISH and immunostaining. Cytogenet Genome Res. 2006;114(3–4):227–34.CrossRefGoogle Scholar
  18. 18.
    Ye CJ, Stevens JB, Liu G, Bremer SW, Jaiswal AS, Ye KJ, Lin MF, Lawrenson L, Lancaster WD, Kurkinen M, Liao JD, Gairola CG, Shekhar MP, Narayan S, Miller FR, Heng HH. Genome based cell population heterogeneity promotes tumorigenicity: the evolutionary mechanism of cancer. J Cell Physiol. 2009;219(2):288–300.CrossRefGoogle Scholar
  19. 19.
    Horne SD, Pollick SA, Heng HH. Evolutionary mechanism unifies the hallmarks of cancer. Int J Cancer 2015;136(9):2012–21.CrossRefGoogle Scholar
  20. 20.
    Horne SD, Ye CJ, Heng HH. Chromosomal instability (CIN) in cancer. eLS 2015;1–9.Google Scholar
  21. 21.
    Heng HH, Bremer SW, Stevens JB, Horne SD, Liu G, Abdallah BY, Ye KJ, Ye CJ. Chromosomal Instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Met Rev. 2013;32:325–40.CrossRefGoogle Scholar
  22. 22.
    Heng HH, Regan SM, Liu G, Ye CJ. Why it is crucial to analyze non clonal chromosome aberrations or NCCAs? Mol Cytogenet. 2016;9:15.CrossRefGoogle Scholar
  23. 23.
    Schröder H, Heimers A, Frentzel-Beyme R, Schott A, Hoffmann W. Chromosome aberration analysis in peripheral lymphocytes of Gulf War and Balkans War veterans. Radiat Prot Dosimetry 2003;103(3):211–9.CrossRefGoogle Scholar
  24. 24.
    Bakhmutsky MV, Squibb K, McDiarmid M, Oliver M, Tucker JD. Long-term exposure to depleted uranium in Gulf-War veterans does not induce chromosome aberrations in peripheral blood lymphocytes. Mutat Res. 2013;757(2):132–9.CrossRefGoogle Scholar
  25. 25.
    Heng HH, Stevens JB, Liu G, Bremer SW, Ye CJ. Imaging genome abnormalities in cancer research. Cell Chromosome 2004;3:1.CrossRefGoogle Scholar
  26. 26.
    Heng HH, Stevens JB, Bremer SW, Liu G, Abdallah BY, Ye CJ. Evolutionary mechanisms and diversity in cancer. Adv Cancer Res. 2011;112:217–53.CrossRefGoogle Scholar
  27. 27.
    Poot M, Haaf T. Mechanisms of origin, phenotypic effects and diagnostic implications of complex chromosome rearrangements. Mol Syndromol. 2015;6(3):110–34.CrossRefGoogle Scholar
  28. 28.
    Abdallah BY, Horne SD, Stevens JB, Liu G, Ying AY, Vanderhyden B, Krawetz SA, Gorelick R, Heng HH. Single cell heterogeneity: why unstable genomes are incompatible with average profiles. Cell Cycle 2013;12(23):3640–49.CrossRefGoogle Scholar
  29. 29.
    Stevens JB, Horne SD, Abdallah BY, Ye CJ, Heng HH. Chromosomal instability and transcriptome dynamics in cancer. Cancer Metastasis Rev. 2013;32(3–4):391–402.CrossRefGoogle Scholar
  30. 30.
    Stevens JB, Liu G, Abdallah BY, Horne SD, Ye KJ, Bremer SW, Ye CJ, Krawetz SA, Heng HH. Unstable genomes elevate transcriptome dynamics. Int J Cancer 2014;134(9):2074–87.CrossRefGoogle Scholar
  31. 31.
    Liu G, Stevens JB, Horne SD, Abdallah BY, Ye KJ, Bremer SW, Ye CJ, Chen DJ, Heng HH. Genome chaos: survival strategy during crisis. Cell Cycle 2014;13(4):528–37.CrossRefGoogle Scholar
  32. 32.
    Heng HH, Liu G, Stevens JB, Abdallah BY, Horne SD, Ye KJ, Bremer SW, Chowdhury SK, Ye CJ. Karyotype heterogeneity and unclassified chromosomal abnormalities. Cytogen Genome Res. 2013;139:144–57.CrossRefGoogle Scholar
  33. 33.
    Heng HH. The conflict between complex systems and reductionism. JAMA 2008;300(13):1580–1.CrossRefGoogle Scholar
  34. 34.
    Heng HH. Bio-complexity: challenging reductionism. In: Sturmberg JP, Martin CM, editors. Handbook on systems and complexity in health. New York: Springer; 2013. p. 193–208.CrossRefGoogle Scholar
  35. 35.
    Heng HH, Horne SD, Stevens JB, Abdallah BY, Liu G, Chowdhury SK, Bremer SW, Zhang K, Ye CJ. Heterogeneity mediated system complexity: the ultimate challenge for studying common and complex diseases. In: Sturmberg JP, editor. The value of systems and complexity sciences for healthcare. Cham: Springer; 2016. p. 107–20.CrossRefGoogle Scholar
  36. 36.
    Heng HH, Regan S, Ye CJ. Genotype, environment, and evolutionary mechanism of diseases. Environ Dis. 2016;1:14–23.CrossRefGoogle Scholar
  37. 37.
    Heng HH. Heterogeneity-mediated cellular adaptation and its trade-off: searching for the general principles of diseases. J Eval Clin Pract. 2017;23(1):233–237.CrossRefGoogle Scholar
  38. 38.
    Heng HH. Missing heritability and stochastic genome alterations. Nat Rev Genet. 2010;11(11):813.CrossRefGoogle Scholar
  39. 39.
    Hultén MA, Jonasson J, Iwarsson E, Uppal P, Vorsanova SG, Yurov YB, Iourov IY. Trisomy 21 mosaicism: we may all have a touch of Down syndrome. Cytogenet Genome Res. 2013;139(3):189–92.CrossRefGoogle Scholar
  40. 40.
    Iourov IY, Vorsanova SG, Yurov YB. Chromsomal mosaicism goes global. Mol Cytogenet. 2008;1:26.CrossRefGoogle Scholar
  41. 41.
    Yurov YB, Vorsanova SG, Liehr T, Kolotii AD, Iourov IY. X chromosome aneuploidy in the Alzheimer’s disease brain. Mol Cytogenet. 2014;7(1):20.CrossRefGoogle Scholar
  42. 42.
    Biesterfeld S, Gerres K, Fischer-Wein G, Böcking A. Polyploidy in non-neoplastic tissues. J Clin Pathol. 1994;47(1):38–42.CrossRefGoogle Scholar
  43. 43.
    Duncan AW, Taylor MH, Hickey RD, Hanlon Newell AE, Lenzi ML, Olson SB, Olson SB, Finegold MJ, Grompe M. The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature 2010;467:707–10.CrossRefGoogle Scholar
  44. 44.
    Horne SD, Chowdhury SK, Heng HH. Stress, genomic adaptation, and the evolutionary trade-off. Front Genet. 2014;5:92.CrossRefGoogle Scholar
  45. 45.
    Sturmberg JP, Bennett JM, Martin CM, Picard M. “Multimorbidity” as the manifestation of network disturbances. J Eval Clin Pract. 2017;23(1):199–208.CrossRefGoogle Scholar
  46. 46.
    Sturmberg JP, Martin CP. Complexity in health: an introduction. In: Sturmberg JP, Martin CM, editors. Handbook on systems and complexity in health. New York: Springer; 2013. p. 1–17.CrossRefGoogle Scholar
  47. 47.
    Nesse RM. Evolution: medicine’s most basic science. Lancet 2008;372(S1):S21–7.CrossRefGoogle Scholar
  48. 48.
    Evans JP, Meslin EM, Marteau TM, Caulfield T. Genomics. Deflating the genomic bubble. Science 2011;331:861–2.CrossRefGoogle Scholar
  49. 49.
    Heng HH, Regan S. A systems biology perspective on molecular cytogenetics. Curr Bioinfom. 2016;12(1):4–10.CrossRefGoogle Scholar
  50. 50.
    Noble D. Physiology in rocking the foundation of evolutionary biology. Exp Physiol. 2013;98:1235–43.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Henry H. Heng
    • 1
  • Guo Liu
    • 2
  • Sarah Regan
    • 2
  • Christine J. Ye
    • 3
  1. 1.Center for Molecular Medicine and Genetics, and Department of PathologyWayne State University School of MedicineDetroitUSA
  2. 2.Center for Molecular Medicine and GeneticsWayne State University School of MedicineDetroitUSA
  3. 3.The Division of Hematology/Oncology, Department of Internal Medicine, Comprehensive Cancer CenterUniversity of MichiganAnn ArborUSA

Personalised recommendations