Studied Speleothems and Methodology

  • Anoop Kumar SinghEmail author
Part of the Springer Theses book series (Springer Theses)


Considering the vast expansion of limestone host rock throughout the Himalaya, we studied six caves in the different sectors (Fig. 3.1) under varying precipitation regimes. These are, Kalakot Cave (33°13′19″ N: 74°25′33″ E; altitude, 826 m) from Jammu and Kashmir; Borar Cave (30°38′18″ N: 77°39′09″ E; altitude, 1622 m) and Tityana Cave (30°38′30.7″ N: 77° 39′07.4″ E; altitude, 1470 m) from Himachal Pradesh; Dharamjali Cave (29°31′27.8″ N: 80°12′40.3″ E; altitude, 2200 m), Sainji Cave (30°16′07″ N: 79°18′14″ E; altitude, 1478 m) and Chulerasim Cave (29°53′08″ N: 79°21′06″ E; altitude, 1254 m) from Uttarakhand.


  1. Ahmad SM, Babu A, Padmakumari GVM, Raza W (2008) Surface and deep water changes in the northeast Indian Ocean during the last 60 ka inferred from carbon and oxygen isotopes of planktonic and benthic foraminifera. Palaeogeogr Palaeoclimatol Palaeoecol 262:182–188CrossRefGoogle Scholar
  2. Bhargava ON (1976) Geology of the Krol Belt and associated formations: a reappraisal. Memoirs Geol Surv India 106(1):167–234Google Scholar
  3. Burns SJ, Fleitmann D, Mudelsee M, Neff U, Matter A, Mangini A (2002) A 780-year annually resolved record of Indian Ocean monsoon precipitation from a speleothem from south Oman. J Geophys Res 107(D20):4434CrossRefGoogle Scholar
  4. Frank N, Braum M, Hambach U, Mangini A, Wagner G (2000) Warm period growth of travertine during the last interglaciation in southern Germany. Quat Res 54:38–48CrossRefGoogle Scholar
  5. Goslar T, Hercman H, Pazdur A (2000) Comparison of U-series and radiocarbon dates of speleothems. Radiocarbon 42(3):403–414CrossRefGoogle Scholar
  6. Hendy CH (1971) The isotopic geochemistry of speleothems-I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators. Geochim Cosmochim Acta 35:801–824CrossRefGoogle Scholar
  7. Holzkämper S, Spotl C, Mangini A (2005) High-precision constraints on timing of Alpine warm periods during the middle to late Pleistocene using speleothem growth periods. Earth Planet Sci Lett 236:751–764CrossRefGoogle Scholar
  8. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Phys Rev Lett C 4(5):1889–1906CrossRefGoogle Scholar
  9. Khan A (1973) A new mammalian fossil from the Lower Murree of Kalakot, Jammu and Kashmir State, India. J Geol Soc India 14(3):296–301Google Scholar
  10. Kotlia BS, Ahmad SM, Zhao JX, Raza W, Collerson KD, Joshi LM, Sanwal J (2012) Climatic fluctuations during the LIA and post-LIA in the Kumaun Lesser Himalaya, India: evidence from a 400 yr old stalagmite record. Quat Int 263:129–138CrossRefGoogle Scholar
  11. Laskar AH, Yadava MG, Ramesh R, Polyak VJ, Asmerom Y (2013) A 4 kyr stalagmite oxygen isotopic record of the past Indian Summer Monsoon in the Andaman Islands. Geochem Geophys Geosyst 14(9):3555–3566CrossRefGoogle Scholar
  12. Ludwig KR (2003) Mathematical-statistical treatment of data and errors for 230Th/U geochronology. Rev Min Geochem 52:631–636CrossRefGoogle Scholar
  13. Mathur NS, Juyal KP (2000) Atlas of Early Palaeogene Invertebrate Fossils of the Himalayan Foothills Belt, Monogr. Wadia Institute of Himalayan Geology, Dehradun, p 257Google Scholar
  14. Mattey D, Lowry D, Duffet J, Fisher R, Hodge E, Frisia S (2008) A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem: reconstructed drip water and relationship to local precipitation. Earth Planet Sci Lett 269:80–95CrossRefGoogle Scholar
  15. Nautiyal AC (1990) Microfacies microfossils (organic-walled microfossils) in Middle Proterozoic, Tejam Group of Kumaon Lesser Himalaya and palaeoenvironmental significance. Palaeontol Soc India 35:177–187Google Scholar
  16. Raha PK, Sastry MVA (1982) Stromatolites and Precambrian stratigraphy in India. Precambr Res 18:293–318CrossRefGoogle Scholar
  17. Scholz D, Hoffmann DL (2011) StalAge—an algorithm designed for construction of speleothem age models. Quat Geochronol 6:369–382CrossRefGoogle Scholar
  18. Siddai NS, Shukla MK (2012) Occurrence of rhyolite in Jangalgali Formation, Jammu and Kashmir, Northwest Himalaya, India. Curr Sci 103(7):817–821Google Scholar
  19. Spötl C, Mattey D (2006) Stable isotope microsampling of speleothems for palaeoenvironmental studies: a comparison of microdrill, micromill and laser ablation techniques. Chem Geol 235:48–58CrossRefGoogle Scholar
  20. Srivastava P, Kumar S (1997) Significance of microfossil assemblage, Deoban Limestone, Garhwal Lesser Himalaya, Uttar Pradesh. Palaeobotanist 46(1, 2):7–12Google Scholar
  21. Thakur VC, Rawat BS (1992) Geologic Map of Western Himalaya, 1:1,000,000. Wadia Institute of Himalayan Geology, Dehradun, IndiaGoogle Scholar
  22. Valdiya KS (1962) An outline of the stratigraphy and structure of the southern part of the Pithoragarh District, U.P. J Geol Soc India 3:27–48Google Scholar
  23. Valdiya KS (1969) Stromatolites of the Lesser Himalayan carbonate formations and the Vindhyans. J Geol Soc India 10:1–25Google Scholar
  24. Valdiya KS (1980) Geology of the Kumaun Lesser Himalaya. Wadia Institute of Himalayan Geology, Dehradun, pp 1–291Google Scholar
  25. Valdiya KS (1989) Precambrian stromatolite biostratigraphy of India—a review. Himalayan Geol 13:181–214Google Scholar
  26. Zhao M, Li HC, Liu ZH, Mii HS, Sun HL, Shen CC, Kang SC (2015) Changes in climate and vegetation of central Guizhou in southwest China since the last glacial reflected by stalagmite records from Yelang Cave. J Asian Earth Sci 114(3):549–561CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Centre of Advanced Study (CAS) in GeologyKumaun UniversityNainitalIndia

Personalised recommendations