Skip to main content

Electrodiagnosis of Neuromuscular Junction Disorders

  • Chapter
  • First Online:
Myasthenia Gravis and Related Disorders

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

The electrodiagnostic (EDX) examination in patients with suspected neuromuscular junction (NMJ) disorders requires a sound working knowledge of the physiology and pathophysiology of neuromuscular transmission. The EDX studies that are useful in the evaluation of such patients include (1) motor nerve conduction studies (NCSs), (2) conventional needle electromyography (EMG), (3) repetitive nerve stimulation (RNS), and (4) single-fiber EMG. This chapter reviews the basics of neuromuscular transmission, as it relates to the EDX studies, and discusses in detail the EDX studies and findings in various NMJ disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boonyapisit K, Kaminski HJ, Ruff RL. The molecular basis of neuromuscular transmission disorders. Am J Med. 1999;6:97–113.

    Article  Google Scholar 

  2. Katirji B. Electromyography in clinical practice. A case study approach. 2nd ed. St Louis: Mosby; 2007.

    Google Scholar 

  3. Katirji B, Kaminski HJ. An electrodiagnostic approach to the patient with neuromuscular junction disorder. Neurol Clin. 2003;20:557–86.

    Article  Google Scholar 

  4. Oh SJ. Electromyography: neuromuscular transmission studies. Baltimore: Williams and Wilkins; 1988. p. 87–110. 243–253

    Google Scholar 

  5. Barberi S, Weiss GM, Daube JR. Fibrillation potentials in myasthenia gravis. Muscle Nerve. 1982;5:S50.

    Google Scholar 

  6. Keezer M, Benini M, Chalk C. Botulism. In: Katirji B, Kaminski HJ, Ruff 2nd RL, editors. Neuromuscular disorders in clinical practice. Boston: Butterworth-Heinemann; 2014. p. 1101–10.

    Chapter  Google Scholar 

  7. Cornblath DR, Sladky JT, Sumner AJ. Clinical electrophysiology of infantile botulism. Muscle Nerve. 1983;6:448–652.

    Article  CAS  PubMed  Google Scholar 

  8. Lambert EH, Eaton LM, Rooke ED. Defect of neuromuscular conduction associated with malignant neoplasms. Am J Phys. 1956;187:612–3.

    Google Scholar 

  9. Hatanka Y, Oh SJ. Ten-second exercise is superior to 30-second exercise for post-exercise facilitation in diagnosing Lambert-Eaton myasthenic syndrome. Muscle Nerve. 2008;37:572–5.

    Article  Google Scholar 

  10. Eaton LM, Lambert EH. Electromyography and electric stimulation of nerves in diseases of motor unit: observations on myasthenic syndrome associated with malignant tumors. JAMA. 1957;163:1117–24.

    Article  CAS  Google Scholar 

  11. Tim RW, Sanders DB. Repetitive nerve stimulation studies in the Lambert-Eaton myasthenic syndrome. Muscle Nerve. 1994;17:995–1001.

    Article  CAS  PubMed  Google Scholar 

  12. Stålberg E, Trontelj JV, Sanders DB. Single fiber electromyography. Studies in healthy and diseased muscle. 3rd ed. Fiskebackdkil: Edshagen Publishing; 2010.

    Google Scholar 

  13. Gilchrist JM. Ad hoc committee of the AAEM special interest group on SFEMG. Single fiber EMG reference values: a collaborative effort. Muscle Nerve. 1992;15:151–61.

    Article  Google Scholar 

  14. Sarrigiannis PG, Kennett RP, Read S, Farrugia ME. Single-fiber EMG with concentric needle electrode: validation in myasthenia gravis. Muscle Nerve. 2006;33:61–5.

    Article  PubMed  Google Scholar 

  15. Benatar M, Hammad M, Doss-Riney H. Concentric-needle single-fiber electromyography for the diagnosis of myasthenia gravis. Muscle Nerve. 2006;34:163–8.

    Article  PubMed  Google Scholar 

  16. Stalberg E, Sanders DB, Sajjad A, Cooray G, Leonardis L, Löseth S, et al. Reference values for jitter recorded by concentric needle electrodes in healthy controls: a multicenter study. Muscle Nerve. 2016;53:351–62.

    Article  PubMed  Google Scholar 

  17. Basio MB, Yildiz N, Ertas M. Surface stimulation single-fiber electromyography in myasthenia gravis. J Clin Neurophysiol. 2002;19(1):73–6.

    Article  Google Scholar 

  18. Trontelj JV, Stålberg E. Single motor endplates in myasthenia gravis and Lambert Eaton myasthenic syndrome at different firing rates. Muscle Nerve. 1990;14:226–32.

    Article  Google Scholar 

  19. Sanders DB. The effect of firing rate on neuromuscular jitter in Lambert-Eaton myasthenic syndrome. Muscle Nerve. 1992;15:256–8.

    CAS  PubMed  Google Scholar 

  20. Ekstedt J, Nilsson G, Stålberg E. Calculation of the electromyographic jitter. J Neurol Neurosurg Psychiatry. 1974;37:526–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gilchrist JM. Single fiber EMG. In: Katirji B, Kaminski HJ, Preston DC, Ruff RL, Shapiro EB, editors. Neuromuscular disorders in clinical practice. Boston: Butterworth-Heinemann; 2002. p. 141–50.

    Google Scholar 

  22. Sanders DB, Stålberg EV. Single fiber electromyography. Muscle Nerve. 1996;19:1069–83.

    Article  CAS  PubMed  Google Scholar 

  23. Desmedt JE, Borenstein S. Diagnosis of myasthenia gravis by nerve stimulation. Ann N Y Acad Sci. 1976;74:174–88.

    Article  Google Scholar 

  24. Ozdemir C, Young RR. The results to be expected from electrical testing in the diagnosis of myasthenia gravis. Ann N Y Acad Sci. 1976;74:203–22.

    Article  Google Scholar 

  25. Oh SH, Kim DE, Kuruoglu R, Bradley RJ, Dwyer D. Diagnostic sensitivity of the laboratory tests in myasthenia gravis. Muscle Nerve. 1992;5:720–4.

    Article  Google Scholar 

  26. Costa J, Evangelista T, Conceicao I, de Carvalho M. Repetitive nerve stimulation in myasthenia gravis—relative sensitivity of different muscles. Clin Neurophysiol. 2004;115(12):2776–82.

    Article  PubMed  Google Scholar 

  27. Zinman LH, O’connor PW, Dadson KE, Leung RC, Ngo M, Bril V. Sensitivity of repetitive facial-nerve stimulation in patients with myasthenia gravis. Muscle Nerve. 2006;33:694–6.

    Article  PubMed  Google Scholar 

  28. Oh SJ, Hatanaka Y, Hemmi S, Young AM, Scheufele ML, Nations SP, et al. Repetitive nerve stimulation of facial muscles in MuSK antibody-positive myasthenia gravis. Muscle Nerve. 2006;33:500–4.

    Article  PubMed  Google Scholar 

  29. Rubin DI, Hentschel K. Is exercise necessary with repetitive nerve stimulation in evaluating patients with suspected myasthenia gravis? Muscle Nerve. 2007;35:103–6.

    Article  PubMed  Google Scholar 

  30. Sanders DB, Howard JF. Single fiber EMG in myasthenia gravis. Muscle Nerve. 1986;9:809–19.

    Article  CAS  PubMed  Google Scholar 

  31. Farrugia ME, Kennett RP, Newsom-Davis J, Hilton-Jones D, Vincent A. Single-fiber electromyography in limb and facial muscles in muscle-specific kinase antibody and acetylcholine receptor antibody myasthenia gravis. Muscle Nerve. 2006;33:568–70.

    Article  CAS  PubMed  Google Scholar 

  32. Baruca M, Leonardis L, Podnar S, Hojs-Fabjan T, Grad A, Jerin A, et al. Single fiber EMG as a prognostic tool in myasthenia gravis. Muscle Nerve. 2016;54:1034–40.

    Article  CAS  PubMed  Google Scholar 

  33. Abraham A, Breiner A, Barnett C, Katzberg HD, Lovblom LE, Rt MN, et al. Electrophysiological testing is correlated with myasthenia gravis severity. Muscle Nerve. 2017;56(3):445–8. https://doi.org/10.1002/mus.25539.

    Article  PubMed  Google Scholar 

  34. Sanders DB, Massey JM. Does change in neuromuscular jitter predict or correlate with clinical change in MG? Muscle Nerve. 2017;56(1):45–50.

    Article  PubMed  Google Scholar 

  35. Lambert EH, Rooke ED, Eaton LM, et al. Myasthenic syndrome occasionally associated with bronchial neoplasm: neurophysiologic studies. In: Viets HR, editor. Myasthenia gravis: the second international symposium proceedings 1959. Springfield: Charles C. Thomas; 1961. p. 362–410.

    Google Scholar 

  36. O’Neil JH, Murray NMF, Newsom-Davis J. The Lambert-Eaton myasthenic syndrome: a review of 50 cases. Brain. 1988;111:577–96.

    Article  Google Scholar 

  37. Titulaer MJ, Maddison P, Sont JK, Wirtz PW, Hilton-Jones D, Klooster R, et al. Clinical Dutch-English Lambert-Eaton myasthenic syndrome (LEMS) tumor association prediction score accurately predicts small-cell lung cancer in LEMS. J Clin Oncol. 2011;29(7):902–8.

    Article  PubMed  Google Scholar 

  38. Juel VC, Massey JM, Sanders DB. Lambert-Eaton myasthenic syndrome. Findings in 97 patients. Muscle Nerve. 2006;34:543.

    Google Scholar 

  39. Oh SJ, Kurokawa K, Claussen GC, Ryan HF Jr. Electrophysiological diagnostic criteria of Lambert-Eaton myasthenic syndrome. Muscle Nerve. 2005;32:515–20.

    Article  PubMed  Google Scholar 

  40. Maddison P, Newsom-Davis J, Mills KR. Distribution of electrophysiological abnormality in Lambert-Eaton myasthenic syndrome. J Neurol Neurosurg Psychiatry. 1998;5:213–7.

    Article  Google Scholar 

  41. Maddison P, Newsom-Davis J. The Lambert-Eaton myasthenic syndrome. In: Katirji B, Kaminski HJ, Preston DC, Ruff RL, Shapiro EB, editors. Neuromuscular disorders in clinical practice. Boston: Butterworth-Heinemann; 2002. p. 931–41.

    Google Scholar 

  42. Oh SJ, Hatanaka Y, Claussen GC, Sher E. Electrophysiological differences in seropositive and seronegative Lambert-Eaton myasthenic syndrome. Muscle Nerve. 2007;35(2):178–83.

    Article  PubMed  Google Scholar 

  43. Guan Y, Ding Q, Liu M, Niu J, Cui L. Single-fiber EMG with concentric electrodes in Lambert-Eaton myasthenia. Muscle Nerve. 2017;56(2):253–7.

    Article  CAS  PubMed  Google Scholar 

  44. Schiller HH, Stålberg E. Human botulism studied with single-fiber electromyography. Arch Neurol. 1978;35:346–9.

    Article  CAS  PubMed  Google Scholar 

  45. Padua L, Aprile I, Monaco ML, Fenicia L, Anniballi F, Pauri F, et al. Neurophysiological assessment in the diagnosis of botulism: usefulness of single-fiber EMG. Muscle Nerve. 1999;22:1388–92.

    Article  CAS  PubMed  Google Scholar 

  46. Cherrington M. Electrophysiologic methods as an aid in diagnosis of botulism: a review. Muscle Nerve. 1982;5:528–9.

    Google Scholar 

  47. Souayah N, Karim H, Kamin SS, McArdle J, Marcus S. Severe botulism after focal injection of botulinum toxin. Neurology. 2006;67:1855–6.

    Article  CAS  PubMed  Google Scholar 

  48. Engel AG. Congenital myasthenic syndromes. In: Katirji B, Kaminski HJ, Preston DC, Ruff RL, Shapiro EB, editors. Neuromuscular disorders in clinical practice. Boston: Butterworth-Heinemann; 2002. p. 953–63.

    Google Scholar 

  49. Maselli RA, Wollman RB, Leung C, Distad B, Palombi S, Richman DP, et al. Neuromuscular transmission in amyotrophic lateral sclerosis. Muscle Nerve. 1993;16:1193–203.

    Article  CAS  PubMed  Google Scholar 

  50. Killian JK, Wilfong AA, Burnett L, Appel SH, Boland D. Decremental motor responses to repetitive nerve stimulation in ALS. Muscle Nerve. 1994;17:747–54.

    Article  CAS  PubMed  Google Scholar 

  51. Lo YL, Chan LL, Pan A, Ratnagopal P. Acute ophthalmoparesis in the anti-GQ1b antibody syndrome: electrophysiological evidence of neuromuscular transmission defect in the orbicularis oculi. J Neurol Neurosurg Psychiatry. 2004;75:436–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sartucci F, Cafforio G, Borghetti D, Domenici L, Orlandi G, Murri L. Electrophysiological evidence by single fiber electromyography of neuromuscular transmission impairment in a case of Miller Fisher syndrome. Neurol Sci. 2005;26:125–8.

    Article  CAS  PubMed  Google Scholar 

  53. Lange DJ, Deangelis T, Sivak MA. Single-fiver electromyography shows terminal axon dysfunction in Miller Fisher syndrome. Muscle Nerve. 2006;34:232–4.

    Article  PubMed  Google Scholar 

  54. Buchwald B, Bufler J, Carpo M, Heidenreich F, Pitz R, Dudel J, et al. Combined pre- and postsynaptic action of IgG antibodies in Miller Fisher syndrome. Neurology. 2001;56:67–74.

    Article  CAS  PubMed  Google Scholar 

  55. Plomp JJ, Molenaar PC, O’Hanlon GM, Jacobs BC, Veitch J, Daha MR, et al. Miller Fisher anti-GQ1b antibodies: alpha-latrotoxin–like effects on motor endplates. Ann Neurol. 1999;45:189–99.

    Article  CAS  PubMed  Google Scholar 

  56. Buchwald B, Toyka KV, Zielasek J, Weishaupt A, Schweiger S, Dudel J. Neuromuscular blockade by IgG antibodies from patients with Guillain–Barre syndrome: a macropatch-clamp study. Ann Neurol. 1998;44:913–22.

    Article  CAS  PubMed  Google Scholar 

  57. Spaans F, Vredeveld JW, Morre HH, Jacobs BC, De Baets MH. Dysfunction at the motor end-plate and axon membrane in Guillain–Barré syndrome: a single-fiber EMG study. Muscle Nerve. 2003;27:426–34.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher David Geiger DO .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Geiger, C.D., Katirji, B. (2018). Electrodiagnosis of Neuromuscular Junction Disorders. In: Kaminski, H., Kusner, L. (eds) Myasthenia Gravis and Related Disorders. Current Clinical Neurology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-73585-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73585-6_9

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-73584-9

  • Online ISBN: 978-3-319-73585-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics