Skip to main content

Thymoma-Associated Myasthenia Gravis

  • Chapter
  • First Online:
Book cover Myasthenia Gravis and Related Disorders

Part of the book series: Current Clinical Neurology ((CCNEU))

  • 2100 Accesses

Abstract

Thymoma-associated MG (TAMG) is almost always due to autoantibodies that recognize soluble nicotinic acetylcholine receptors (AChR). Alongside early-onset MG (EOMG) and late-onset MG (LOMG), TAMG represents the smallest subset (10–15%) among the anti-AChR MG subtypes. TAMG-associated thymomas are unique among cancers because almost all maintain thymus-like features, including intratumorous thymopoiesis. Therefore, it is thought that key immune tolerance-inducing mechanisms of the normal thymus go awry in thymomas. We describe the widely accepted three-step pathogenetic model of TAMG that comprises (1) intratumorous biased positive selection of T cells that preferentially recognizes skeletal muscle autoantigens, (2) intratumorous defective negative selection of potentially autoreactive effector T cells and deficient generation of regulatory T cells, and (3) the extra-tumorous, self-perpetuating activation of T and B cells and autoantibody-producing cells following enigmatic triggers. Molecular features underlying the three-step autoimmunization are also addressed. Current pathogenetic models of EOMG and LOMG are described for comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilhus NE. Myasthenia gravis. N Engl J Med. 2016;375(26):2570–81.

    Article  CAS  PubMed  Google Scholar 

  2. Gilhus NE, Verschuuren JJ. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol. 2015;14(10):1023–36.

    Article  CAS  PubMed  Google Scholar 

  3. Leite MI, Jacob S, Viegas S, Cossins J, Clover L, Morgan BP, et al. IgG1 antibodies to acetylcholine receptors in ‘seronegative’ myasthenia gravis. Brain. 2008;131(Pt 7):1940–52.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kaminski HJ. Seronegative myasthenia gravis-a vanishing disorder? JAMA Neurol. 2016;73(9):1055–6.

    Article  PubMed  Google Scholar 

  5. Leite MI, Strobel P, Jones M, Micklem K, Moritz R, Gold R, et al. Fewer thymic changes in MuSK antibody-positive than in MuSK antibody-negative MG. Ann Neurol. 2005;57(3):444–8.

    Article  PubMed  Google Scholar 

  6. Gilhus NE, Verschuuren JJ. Myasthenia gravis: subgroup classifications—authors’ reply. Lancet Neurol. 2016;15(4):357–8.

    Article  PubMed  Google Scholar 

  7. Hu B, Simon-Keller K, Kuffer S, Strobel P, Braun T, Marx A, et al. Myf5 and myogenin in the development of thymic myoid cells—implications for a murine in vivo model of myasthenia gravis. Exp Neurol. 2016;277:76–85.

    Article  CAS  PubMed  Google Scholar 

  8. Zisimopoulou P, Evangelakou P, Tzartos J, Lazaridis K, Zouvelou V, Mantegazza R, et al. A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. J Autoimmun. 2014;52:139–45.

    Article  CAS  PubMed  Google Scholar 

  9. Strobel P, Moritz R, Leite MI, Willcox N, Chuang WY, Gold R, et al. The ageing and myasthenic thymus: a morphometric study validating a standard procedure in the histological workup of thymic specimens. J Neuroimmunol. 2008;201–202:64–73.

    Article  PubMed  CAS  Google Scholar 

  10. Chuang WY, Strobel P, Bohlender-Willke AL, Rieckmann P, Nix W, Schalke B, et al. Late-onset myasthenia gravis—CTLA4(low) genotype association and low-for-age thymic output of naive T cells. J Autoimmun. 2014;52:122–9.

    Article  CAS  PubMed  Google Scholar 

  11. Skeie GO, Romi F. Paraneoplastic myasthenia gravis: immunological and clinical aspects. Eur J Neurol. 2008;15(10):1029–33.

    Article  CAS  PubMed  Google Scholar 

  12. Dalla Costa M, Mangano FA, Betterle C. Thymic hyperplasia in patients with Graves’ disease. J Endocrinol Investig. 2014;37(12):1175–9.

    Article  CAS  Google Scholar 

  13. Middleton G, Schoch EM. The prevalence of human thymic lymphoid follicles is lower in suicides. Virchows Arch. 2000;436(2):127–30.

    Article  CAS  PubMed  Google Scholar 

  14. Leite MI, Jones M, Strobel P, Marx A, Gold R, Niks E, et al. Myasthenia gravis thymus: complement vulnerability of epithelial and myoid cells, complement attack on them, and correlations with autoantibody status. Am J Pathol. 2007;171(3):893–905.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kirchner T, Schalke B, Melms A, von Kugelgen T, Muller-Hermelink HK. Immunohistological patterns of non-neoplastic changes in the thymus in myasthenia gravis. Virchows Arch B Cell Pathol Incl Mol Pathol. 1986;52(3):237–57.

    Article  CAS  PubMed  Google Scholar 

  16. Curnow J, Corlett L, Willcox N, Vincent A. Presentation by myoblasts of an epitope from endogenous acetylcholine receptor indicates a potential role in the spreading of the immune response. J Neuroimmunol. 2001;115(1–2):127–34.

    Article  CAS  PubMed  Google Scholar 

  17. Geuder KI, Marx A, Witzemann V, Schalke B, Toyka K, Kirchner T, et al. Pathogenetic significance of fetal-type acetylcholine receptors on thymic myoid cells in myasthenia gravis. Dev Immunol. 1992;2(2):69–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schluep M, Willcox N, Vincent A, Dhoot GK, Newsom-Davis J. Acetylcholine receptors in human thymic myoid cells in situ: an immunohistological study. Ann Neurol. 1987;22(2):212–22.

    Article  CAS  PubMed  Google Scholar 

  19. Marx A, Osborn M, Tzartos S, Geuder KI, Schalke B, Nix W, et al. A striational muscle antigen and myasthenia gravis-associated thymomas share an acetylcholine-receptor epitope. Dev Immunol. 1992;2(2):77–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schalke BC, Mertens HG, Kirchner T, Wegener S, Muller-Hermelink HK. Long-term treatment with azathioprine abolishes thymic lymphoid follicular hyperplasia in myasthenia gravis. Lancet. 1987;2(8560):682.

    Article  CAS  PubMed  Google Scholar 

  21. Marx A, Pfister F, Schalke B, Nix W, Strobel P. Thymus pathology observed in the MGTX trial. Ann N Y Acad Sci. 2012;1275:92–100.

    Article  CAS  PubMed  Google Scholar 

  22. Gregersen PK, Kosoy R, Lee AT, Lamb J, Sussman J, McKee D, et al. Risk for myasthenia gravis maps to a (151) Pro→Ala change in TNIP1 and to human leukocyte antigen-B*08. Ann Neurol. 2012;72(6):927–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Renton AE, Pliner HA, Provenzano C, Evoli A, Ricciardi R, Nalls MA, et al. A genome-wide association study of myasthenia gravis. JAMA Neurol. 2015;72(4):396–404.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vincent A, Scadding GK, Thomas HC, Newsom-Davis J. In-vitro synthesis of anti-acetylcholine-receptor antibody by thymic lymphocytes in myasthenia gravis. Lancet. 1978;1(8059):305–7.

    Article  CAS  PubMed  Google Scholar 

  25. Berrih-Aknin S. Myasthenia gravis: paradox versus paradigm in autoimmunity. J Autoimmun. 2014;52:1–28.

    Article  CAS  PubMed  Google Scholar 

  26. Gradolatto A, Nazzal D, Truffault F, Bismuth J, Fadel E, Foti M, et al. Both Treg cells and Tconv cells are defective in the myasthenia gravis thymus: roles of IL-17 and TNF-alpha. J Autoimmun. 2014;52:53–63.

    Article  CAS  PubMed  Google Scholar 

  27. Hohlfeld R, Wekerle H. Reflections on the “intrathymic pathogenesis” of myasthenia gravis. J Neuroimmunol. 2008;201–202:21–7.

    Article  PubMed  CAS  Google Scholar 

  28. Wolfe GI, Kaminski HJ, Aban IB, Minisman G, Kuo HC, Marx A, et al. Randomized trial of thymectomy in myasthenia gravis. N Engl J Med. 2016;375(6):511–22.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Marx A, Chan JK, Coindre JM, Detterbeck F, Girard N, Harris NL, et al. The 2015 World Health Organization classification of tumors of the thymus: continuity and changes. J Thorac Oncol. 2015;10(10):1383–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. IARC, editor. WHO classification of tumours of the lung, pleura, thymus and heart. 4th ed. Geneva: WHO; 2015.

    Google Scholar 

  31. Strobel P, Murumagi A, Klein R, Luster M, Lahti M, Krohn K, et al. Deficiency of the autoimmune regulator AIRE in thymomas is insufficient to elicit autoimmune polyendocrinopathy syndrome type 1 (APS-1). J Pathol. 2007;211(5):563–71.

    Article  CAS  PubMed  Google Scholar 

  32. Detterbeck FC, Nicholson AG, Kondo K, Van Schil P, Moran C. The Masaoka-Koga stage classification for thymic malignancies: clarification and definition of terms. J Thorac Oncol. 2011;6(7 Suppl 3):S1710–6.

    Article  PubMed  Google Scholar 

  33. Weis CA, Yao X, Deng Y, Detterbeck FC, Marino M, Nicholson AG, et al. The impact of thymoma histotype on prognosis in a worldwide database. J Thorac Oncol. 2015;10(2):367–72.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kondo K. The International Association for the Study of Lung Cancer/the International Thymic Malignancies Interest Group proposal for the TNM staging systems for thymic epithelial tumors and large-scale retrospective data. J Thorac Dis. 2016;8(8):1856–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Meager A, Wadhwa M, Dilger P, Bird C, Thorpe R, Newsom-Davis J, et al. Anti-cytokine autoantibodies in autoimmunity: preponderance of neutralizing autoantibodies against interferon-alpha, interferon-omega and interleukin-12 in patients with thymoma and/or myasthenia gravis. Clin Exp Immunol. 2003;132(1):128–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Smith SM, Ossa-Gomez LJ. A quantitative histologic comparison of the thymus in 100 healthy and diseased adults. Am J Clin Pathol. 1981;76(5):657–65.

    Article  CAS  PubMed  Google Scholar 

  37. Watanabe N, Wang YH, Lee HK, Ito T, Wang YH, Cao W, et al. Hassall’s corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature. 2005;436(7054):1181–5.

    Article  CAS  PubMed  Google Scholar 

  38. Roxanis I, Micklem K, McConville J, Newsom-Davis J, Willcox N. Thymic myoid cells and germinal center formation in myasthenia gravis; possible roles in pathogenesis. J Neuroimmunol. 2002;125(1–2):185–97.

    Article  CAS  PubMed  Google Scholar 

  39. Romi F, Skeie GO, Aarli JA, Gilhus NE. Muscle autoantibodies in subgroups of myasthenia gravis patients. J Neurol. 2000;247(5):369–75.

    Article  CAS  PubMed  Google Scholar 

  40. Klein R, Marx A, Strobel P, Schalke B, Nix W, Willcox N. Autoimmune associations and autoantibody screening show focused recognition in patient subgroups with generalized myasthenia gravis. Hum Immunol. 2013;74(9):1184–93.

    Article  CAS  PubMed  Google Scholar 

  41. Zouridakis M, Zisimopoulou P, Poulas K, Tzartos SJ. Recent advances in understanding the structure of nicotinic acetylcholine receptors. IUBMB Life. 2009;61(4):407–23.

    Article  CAS  PubMed  Google Scholar 

  42. Wakkach A, Poea S, Chastre E, Gespach C, Lecerf F, De La Porte S, et al. Establishment of a human thymic myoid cell line. Phenotypic and functional characteristics. Am J Pathol. 1999;155(4):1229–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fraterman S, Khurana TS, Rubinstein NA. Identification of acetylcholine receptor subunits differentially expressed in singly and multiply innervated fibers of extraocular muscles. Invest Ophthalmol Vis Sci. 2006;47(9):3828–34.

    Article  PubMed  Google Scholar 

  44. Tzartos SJ, Lindstrom JM. Monoclonal antibodies used to probe acetylcholine receptor structure: localization of the main immunogenic region and detection of similarities between subunits. Proc Natl Acad Sci U S A. 1980;77(2):755–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Siara J, Rudel R, Marx A. Absence of acetylcholine-induced current in epithelial cells from thymus glands and thymomas of myasthenia gravis patients. Neurology. 1991;41(1):128–31.

    Article  CAS  PubMed  Google Scholar 

  46. Giraud M, Taubert R, Vandiedonck C, Ke X, Levi-Strauss M, Pagani F, et al. An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus. Nature. 2007;448(7156):934–7.

    Article  CAS  PubMed  Google Scholar 

  47. Rodriguez Cruz PM, Al-Hajjar M, Huda S, Jacobson L, Woodhall M, Jayawant S, et al. Clinical features and diagnostic usefulness of antibodies to clustered acetylcholine receptors in the diagnosis of seronegative myasthenia gravis. JAMA Neurol. 2015;72(6):642–9.

    Article  PubMed  Google Scholar 

  48. Mygland A, Aarli JA, Matre R, Gilhus NE. Ryanodine receptor antibodies related to severity of thymoma associated myasthenia gravis. J Neurol Neurosurg Psychiatry. 1994;57(7):843–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Skeie GO, Aarli JA, Gilhus NE. Titin and ryanodine receptor antibodies in myasthenia gravis. Acta Neurol Scand Suppl. 2006;183:19–23.

    Article  CAS  PubMed  Google Scholar 

  50. Suzuki S, Utsugisawa K, Nagane Y, Suzuki N. Three types of striational antibodies in myasthenia gravis. Autoimmun Dis. 2011;2011:740583.

    Google Scholar 

  51. Imai T, Tsuda E, Toyoshima T, Yoshikawa H, Motomura M, Shimohama S. Anti-ryanodine receptor-positive acetylcholine receptor-negative myasthenia gravis: evidence of impaired excitation-contraction coupling. Muscle Nerve. 2011;43(2):294–5.

    Article  PubMed  Google Scholar 

  52. Aarli JA. Myasthenia gravis in the elderly: is it different? Ann N Y Acad Sci. 2008;1132:238–43.

    Article  PubMed  Google Scholar 

  53. Romi F, Skeie GO, Vedeler C, Aarli JA, Zorzato F, Gilhus NE. Complement activation by titin and ryanodine receptor autoantibodies in myasthenia gravis. A study of IgG subclasses and clinical correlations. J Neuroimmunol. 2000;111(1–2):169–76.

    Article  CAS  PubMed  Google Scholar 

  54. Wolff AS, Karner J, Owe JF, Oftedal BE, Gilhus NE, Erichsen MM, et al. Clinical and serologic parallels to APS-I in patients with thymomas and autoantigen transcripts in their tumors. J Immunol. 2014;193(8):3880–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kisand K, Boe Wolff AS, Podkrajsek KT, Tserel L, Link M, Kisand KV, et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med. 2010;207(2):299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Meyer S, Woodward M, Hertel C, Vlaicu P, Haque Y, Karner J, et al. AIRE-deficient patients harbor unique high-affinity disease-ameliorating autoantibodies. Cell. 2016;166(3):582–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lindstrom JM, Seybold ME, Lennon VA, Whittingham S, Duane DD. Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value. Neurology. 1976;26(11):1054–9.

    Article  CAS  PubMed  Google Scholar 

  58. Aarli JA, Stefansson K, Marton LS, Wollmann RL. Patients with myasthenia gravis and thymoma have in their sera IgG autoantibodies against titin. Clin Exp Immunol. 1990;82(2):284–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mygland A, Tysnes OB, Matre R, Volpe P, Aarli JA, Gilhus NE. Ryanodine receptor autoantibodies in myasthenia gravis patients with a thymoma. Ann Neurol. 1992;32(4):589–91.

    Article  CAS  PubMed  Google Scholar 

  60. Marx A, O’Connor R, Tzartos S, Kalies I, Kirchner T, Muller-Hermelink HK. Acetylcholine receptor epitope in proteins of myasthenia gravis-associated thymomas and non-thymic tissues. Thymus. 1989;14(1–3):171–8.

    CAS  PubMed  Google Scholar 

  61. Romi F, Bo L, Skeie GO, Myking A, Aarli JA, Gilhus NE. Titin and ryanodine receptor epitopes are expressed in cortical thymoma along with costimulatory molecules. J Neuroimmunol. 2002;128(1–2):82–9.

    Article  CAS  PubMed  Google Scholar 

  62. Mygland A, Kuwajima G, Mikoshiba K, Tysnes OB, Aarli JA, Gilhus NE. Thymomas express epitopes shared by the ryanodine receptor. J Neuroimmunol. 1995;62(1):79–83.

    Article  CAS  PubMed  Google Scholar 

  63. Kusner LL, Mygland A, Kaminski HJ. Ryanodine receptor gene expression thymomas. Muscle Nerve. 1998;21(10):1299–303.

    Article  CAS  PubMed  Google Scholar 

  64. Kirchner T, Hoppe F, Muller-Hermelink HK, Schalke B, Tzartos S. Acetylcholine receptor epitopes on epithelial cells of thymoma in myasthenia gravis. Lancet (London, England). 1987;1(8526):218.

    Article  CAS  Google Scholar 

  65. Marx A, Wilisch A, Schultz A, Greiner A, Magi B, Pallini V, et al. Expression of neurofilaments and of a titin epitope in thymic epithelial tumors. Implications for the pathogenesis of myasthenia gravis. Am J Pathol. 1996;148(6):1839–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Schultz A, Hoffacker V, Wilisch A, Nix W, Gold R, Schalke B, et al. Neurofilament is an autoantigenic determinant in myasthenia gravis. Ann Neurol. 1999;46(2):167–75.

    Article  CAS  PubMed  Google Scholar 

  67. Hohlfeld R, Toyka KV, Heininger K, Grosse-Wilde H, Kalies I. Autoimmune human T lymphocytes specific for acetylcholine receptor. Nature. 1984;310(5974):244–6.

    Article  CAS  PubMed  Google Scholar 

  68. Nagvekar N, Moody AM, Moss P, Roxanis I, Curnow J, Beeson D, et al. A pathogenetic role for the thymoma in myasthenia gravis. Autosensitization of IL-4- producing T cell clones recognizing extracellular acetylcholine receptor epitopes presented by minority class II isotypes. J Clin Invest. 1998;101(10):2268–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Marx A, Willcox N, Leite MI, Chuang WY, Schalke B, Nix W, et al. Thymoma and paraneoplastic myasthenia gravis. Autoimmunity. 2010;43(5–6):413–27.

    Article  CAS  PubMed  Google Scholar 

  70. Sommer N, Harcourt GC, Willcox N, Beeson D, Newsom-Davis J. Acetylcholine receptor-reactive T lymphocytes from healthy subjects and myasthenia gravis patients. Neurology. 1991;41(8):1270–6.

    Article  CAS  PubMed  Google Scholar 

  71. Melms A, Malcherek G, Gern U, Wietholter H, Muller CA, Schoepfer R, et al. T cells from normal and myasthenic individuals recognize the human acetylcholine receptor: heterogeneity of antigenic sites on the alpha-subunit. Ann Neurol. 1992;31(3):311–8.

    Article  CAS  PubMed  Google Scholar 

  72. Balandina A, Lecart S, Dartevelle P, Saoudi A, Berrih-Aknin S. Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood. 2005;105(2):735–41.

    Article  CAS  PubMed  Google Scholar 

  73. Alahgholi-Hajibehzad M, Oflazer P, Aysal F, Durmus H, Gulsen-Parman Y, Marx A, et al. Regulatory function of CD4+CD25++ T cells in patients with myasthenia gravis is associated with phenotypic changes and STAT5 signaling: 1,25-dihydroxyvitamin D3 modulates the suppressor activity. J Neuroimmunol. 2015;281:51–60.

    Article  CAS  PubMed  Google Scholar 

  74. Buckley C, Oger J, Clover L, Tuzun E, Carpenter K, Jackson M, et al. Potassium channel antibodies in two patients with reversible limbic encephalitis. Ann Neurol. 2001;50(1):73–8.

    Article  CAS  PubMed  Google Scholar 

  75. Strobel P, Helmreich M, Menioudakis G, Lewin SR, Rudiger T, Bauer A, et al. Paraneoplastic myasthenia gravis correlates with generation of mature naive CD4(+) T cells in thymomas. Blood. 2002;100(1):159–66.

    Article  CAS  PubMed  Google Scholar 

  76. Strobel P, Rosenwald A, Beyersdorf N, Kerkau T, Elert O, Murumagi A, et al. Selective loss of regulatory T cells in thymomas. Ann Neurol. 2004;56(6):901–4.

    Article  PubMed  CAS  Google Scholar 

  77. Maniaol AH, Elsais A, Lorentzen AR, Owe JF, Viken MK, Saether H, et al. Late onset myasthenia gravis is associated with HLA DRB1*15:01 in the Norwegian population. PLoS One. 2012;7(5):e36603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Seldin MF, Alkhairy OK, Lee AT, Lamb JA, Sussman J, Pirskanen-Matell R, et al. Genome-wide Association Study of late-onset myasthenia gravis: confirmation of TNFRSF11A, and identification of ZBTB10 and three distinct HLA associations. Mol Med. 2015;21(1):769–81.

    Article  CAS  PubMed Central  Google Scholar 

  79. Hoffacker V, Schultz A, Tiesinga JJ, Gold R, Schalke B, Nix W, et al. Thymomas alter the T-cell subset composition in the blood: a potential mechanism for thymoma-associated autoimmune disease. Blood. 2000;96(12):3872–9.

    CAS  PubMed  Google Scholar 

  80. Tackenberg B, Schlegel K, Happel M, Eienbroker C, Gellert K, Oertel WH, et al. Expanded TCR Vbeta subsets of CD8(+) T-cells in late-onset myasthenia gravis: novel parallels with thymoma patients. J Neuroimmunol. 2009;216(1–2):85–91.

    Article  CAS  PubMed  Google Scholar 

  81. Cavalcante P, Cufi P, Mantegazza R, Berrih-Aknin S, Bernasconi P, Le Panse R. Etiology of myasthenia gravis: innate immunity signature in pathological thymus. Autoimmun Rev. 2013;12(9):863–74.

    Article  CAS  PubMed  Google Scholar 

  82. Cavalcante P, Serafini B, Rosicarelli B, Maggi L, Barberis M, Antozzi C, et al. Epstein-Barr virus persistence and reactivation in myasthenia gravis thymus. Ann Neurol. 2010;67(6):726–38.

    PubMed  Google Scholar 

  83. Meyer M, Hols AK, Liersch B, Leistner R, Gellert K, Schalke B, et al. Lack of evidence for Epstein-Barr virus infection in myasthenia gravis thymus. Ann Neurol. 2011;70(3):515–8.

    Article  PubMed  Google Scholar 

  84. Kakalacheva K, Maurer MA, Tackenberg B, Munz C, Willcox N, Lunemann JD. Intrathymic Epstein-Barr virus infection is not a prominent feature of myasthenia gravis. Ann Neurol. 2011;70(3):508–14.

    Article  CAS  PubMed  Google Scholar 

  85. Alkhawajah NM, Oger J. Late-onset myasthenia gravis: a review when incidence in older adults keeps increasing. Muscle Nerve. 2013;48(5):705–10.

    Article  PubMed  Google Scholar 

  86. Nacu A, Andersen JB, Lisnic V, Owe JF, Gilhus NE. Complicating autoimmune diseases in myasthenia gravis: a review. Autoimmunity. 2015;48(6):362–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Bucknall RC, Dixon ASJ, Glick EN, Woodland J, Zutshi DW. Myasthenia gravis associated with penicillamine treatment for rheumatoid arthritis. Br Med J. 1975;1(5958):600–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Poulas K, Koutsouraki E, Kordas G, Kokla A, Tzartos SJ. Anti-MuSK- and anti-AChR-positive myasthenia gravis induced by d-penicillamine. J Neuroimmunol. 2012;250(1–2):94–8.

    Article  CAS  PubMed  Google Scholar 

  89. Gilhus NE, Skeie GO, Romi F, Lazaridis K, Zisimopoulou P, Tzartos S. Myasthenia gravis—autoantibody characteristics and their implications for therapy. Nat Rev Neurol. 2016;12(5):259–68.

    Article  CAS  PubMed  Google Scholar 

  90. Sims GP, Shiono H, Willcox N, Stott DI. Somatic hypermutation and selection of B cells in thymic germinal centers responding to acetylcholine receptor in myasthenia gravis. J Immunol. 2001;167(4):1935–44.

    Article  CAS  PubMed  Google Scholar 

  91. Meinl E, Klinkert WE, Wekerle H. The thymus in myasthenia gravis. Changes typical for the human disease are absent in experimental autoimmune myasthenia gravis of the Lewis rat. Am J Pathol. 1991;139(5):995–1008.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Robinet M, Maillard S, Cron MA, Berrih-Aknin S, Le Panse R. Review on toll-like receptor activation in myasthenia gravis: application to the development of new experimental models. Clin Rev Allergy Immunol. 2017;52(1):133–47.

    Article  CAS  PubMed  Google Scholar 

  93. Weiss JM, Robinet M, Aricha R, Cufi P, Villeret B, Lantner F, et al. Novel CXCL13 transgenic mouse: inflammation drives pathogenic effect of CXCL13 in experimental myasthenia gravis. Oncotarget. 2016;7(7):7550–62.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wekerle H, Ketelsen UP. Intrathymic pathogenesis and dual genetic control of myasthenia gravis. Lancet. 1977;1(8013):678–80.

    Article  CAS  PubMed  Google Scholar 

  95. Weinberg CB, Hall ZW. Antibodies from patients with myasthenia gravis recognize determinants unique to extrajunctional acetylcholine receptors. Proc Natl Acad Sci U S A. 1979;76(1):504–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kirchner T, Hoppe F, Schalke B, Muller-Hermelink HK. Microenvironment of thymic myoid cells in myasthenia gravis. Virchows Arch B Cell Pathol Incl Mol Pathol. 1988;54(5):295–302.

    CAS  PubMed  Google Scholar 

  97. Abdou NI, Lisak RP, Zweiman B, Abrahamsohn I, Penn AS. The thymus in myasthenia gravis. Evidence for altered cell populations. N Engl J Med. 1974;291(24):1271–5.

    Article  CAS  PubMed  Google Scholar 

  98. Gomez AM, Vrolix K, Martinez-Martinez P, Molenaar PC, Phernambucq M, van der Esch E, et al. Proteasome inhibition with bortezomib depletes plasma cells and autoantibodies in experimental autoimmune myasthenia gravis. J Immunol. 2011;186(4):2503–13.

    Article  CAS  PubMed  Google Scholar 

  99. Willcox HN, Newsom-Davis J, Calder LR. Cell types required for anti-acetylcholine receptor antibody synthesis by cultured thymocytes and blood lymphocytes in myasthenia gravis. Clin Exp Immunol. 1984;58(1):97–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Eimoto T, Kusano T, Ando K, Kikuchi M, Shirakusa T, Kawanami S. Nonneoplastic and nonhyperplastic thymus in myasthenia gravis. An immunohistochemical study with double immunoenzyme labeling of basement membrane and cellular components. Am J Clin Pathol. 1990;94(1):36–43.

    Google Scholar 

  101. Roxanis I, Micklem K, Willcox N. True epithelial hyperplasia in the thymus of early-onset myasthenia gravis patients: implications for immunopathogenesis. J Neuroimmunol. 2001;112(1–2):163–73.

    Article  CAS  PubMed  Google Scholar 

  102. Wakkach A, Guyon T, Bruand C, Tzartos S, Cohen-Kaminsky S, Berrih-Aknin S. Expression of acetylcholine receptor genes in human thymic epithelial cells: implications for myasthenia gravis. J Immunol. 1996;157(8):3752–60.

    CAS  PubMed  Google Scholar 

  103. Poea-Guyon S, Christadoss P, Le Panse R, Guyon T, De Baets M, Wakkach A, et al. Effects of cytokines on acetylcholine receptor expression: implications for myasthenia gravis. J Immunol. 2005;174(10):5941–9.

    Article  CAS  PubMed  Google Scholar 

  104. Gilhus NE, Matre R. Fc gamma receptors and HLA-DR antigens on thymus cells in myasthenia gravis. J Neuroimmunol. 1986;10(3):271–8.

    Article  CAS  PubMed  Google Scholar 

  105. Chilosi M, Iannucci A, Fiore-Donati L, Tridente G, Pampanin M, Pizzolo G, et al. Myasthenia gravis: immunohistological heterogeneity in microenvironmental organization of hyperplastic and neoplastic thymuses suggesting different mechanisms of tolerance breakdown. J Neuroimmunol. 1986;11(3):191–204.

    Article  CAS  PubMed  Google Scholar 

  106. Cufi P, Dragin N, Ruhlmann N, Weiss JM, Fadel E, Serraf A, et al. Central role of interferon-beta in thymic events leading to myasthenia gravis. J Autoimmun. 2014;52:44–52.

    Article  CAS  PubMed  Google Scholar 

  107. Berrih-Aknin S, Ruhlmann N, Bismuth J, Cizeron-Clairac G, Zelman E, Shachar I, et al. CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia. Ann Neurol. 2009;66(4):521–31.

    Article  CAS  PubMed  Google Scholar 

  108. Weiss JM, Cufi P, Bismuth J, Eymard B, Fadel E, Berrih-Aknin S, et al. SDF-1/CXCL12 recruits B cells and antigen-presenting cells to the thymus of autoimmune myasthenia gravis patients. Immunobiology. 2013;218(3):373–81.

    Article  CAS  PubMed  Google Scholar 

  109. Bernasconi P, Barberis M, Baggi F, Passerini L, Cannone M, Arnoldi E, et al. Increased toll-like receptor 4 expression in thymus of myasthenic patients with thymitis and thymic involution. Am J Pathol. 2005;167(1):129–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Meraouna A, Cizeron-Clairac G, Panse RL, Bismuth J, Truffault F, Tallaksen C, et al. The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis. Blood. 2006;108(2):432–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Thangarajh M, Masterman T, Helgeland L, Rot U, Jonsson MV, Eide GE, et al. The thymus is a source of B-cell-survival factors-APRIL and BAFF-in myasthenia gravis. J Neuroimmunol. 2006;178(1–2):161–6.

    Article  CAS  PubMed  Google Scholar 

  112. Berrih-Aknin S, Ragheb S, Le Panse R, Lisak RP. Ectopic germinal centers, BAFF and anti-B-cell therapy in myasthenia gravis. Autoimmun Rev. 2013;12(9):885–93.

    Article  CAS  PubMed  Google Scholar 

  113. Safar D, Aime C, Cohen-Kaminsky S, Berrih-Aknin S. Antibodies to thymic epithelial cells in myasthenia gravis. J Neuroimmunol. 1991;35(1–3):101–10.

    Article  CAS  PubMed  Google Scholar 

  114. Willcox N, Leite MI, Kadota Y, Jones M, Meager A, Subrahmanyam P, et al. Autoimmunizing mechanisms in thymoma and thymus. Ann N Y Acad Sci. 2008;1132:163–73.

    Article  CAS  PubMed  Google Scholar 

  115. Vincent A, Willcox N. The role of T-cells in the initiation of autoantibody responses in thymoma patients. Pathol Res Pract. 1999;195(8):535–40.

    Article  CAS  PubMed  Google Scholar 

  116. Marx A, Porubsky S, Belharazem D, Saruhan-Direskeneli G, Schalke B, Strobel P, et al. Thymoma related myasthenia gravis in humans and potential animal models. Exp Neurol. 2015;270:55–65.

    Article  PubMed  Google Scholar 

  117. Marx A, Pfister F, Schalke B, Saruhan-Direskeneli G, Melms A, Strobel P. The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun Rev. 2013;12(9):875–84.

    Article  CAS  PubMed  Google Scholar 

  118. Kisand K, Lilic D, Casanova JL, Peterson P, Meager A, Willcox N. Mucocutaneous candidiasis and autoimmunity against cytokines in APECED and thymoma patients: clinical and pathogenetic implications. Eur J Immunol. 2011;41(6):1517–27.

    Article  CAS  PubMed  Google Scholar 

  119. Aschenbrenner K, D’Cruz LM, Vollmann EH, Hinterberger M, Emmerich J, Swee LK, et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol. 2007;8(4):351–8.

    Article  CAS  PubMed  Google Scholar 

  120. Buckley C, Douek D, Newsom-Davis J, Vincent A, Willcox N. Mature, long-lived CD4+ and CD8+ T cells are generated by the thymoma in myasthenia gravis. Ann Neurol. 2001;50(1):64–72.

    Article  CAS  PubMed  Google Scholar 

  121. Strobel P, Chuang WY, Chuvpilo S, Zettl A, Katzenberger T, Kalbacher H, et al. Common cellular and diverse genetic basis of thymoma-associated myasthenia gravis: role of MHC class II and AIRE genes and genetic polymorphisms. Ann N Y Acad Sci. 2008;1132:143–56.

    Article  PubMed  CAS  Google Scholar 

  122. Berezovsky IN, Esipova NG, Tumanyan VG. Hierarchy of regions of amino acid sequence with respect to their role in the protein spatial structure. J Comput Biol. 2000;7(1–2):183–92.

    Article  CAS  PubMed  Google Scholar 

  123. Willcox N, Schluep M, Ritter MA, Schuurman HJ, Newsom-Davis J, Christensson B. Myasthenic and nonmyasthenic thymoma. An expansion of a minor cortical epithelial cell subset? Am J Pathol. 1987;127(3):447–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Chuang WY, Strobel P, Belharazem D, Rieckmann P, Toyka KV, Nix W, et al. The PTPN22gain-of-function+1858T(+) genotypes correlate with low IL-2 expression in thymomas and predispose to myasthenia gravis. Genes Immun. 2009;10(8):667–72.

    Article  CAS  PubMed  Google Scholar 

  125. Chuang WY, Strobel P, Gold R, Nix W, Schalke B, Kiefer R, et al. A CTLA4 high genotype is associated with myasthenia gravis in thymoma patients. Ann Neurol. 2005;58(4):644–8.

    Article  CAS  PubMed  Google Scholar 

  126. Zettl A, Strobel P, Wagner K, Katzenberger T, Ott G, Rosenwald A, et al. Recurrent genetic aberrations in thymoma and thymic carcinoma. Am J Pathol. 2000;157(1):257–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Carr AS, Cardwell CR, McCarron PO, McConville J. A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol. 2010;10:46.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Casetta I, Groppo E, De Gennaro R, Cesnik E,Piccolo L, Volpato S, et al. Myasthenia gravis: a changing pattern of incidence. J Neurol. 2010;257(12):2015–9.

    Article  CAS  PubMed  Google Scholar 

  129. Pedersen EG, Hallas J, Hansen K, Jensen PE, Gaist D. Late-onset myasthenia not on the increase: a nationwide register study in Denmark, 1996–2009. Eur J Neurol. 2013;20(2):309–14.

    Article  CAS  PubMed  Google Scholar 

  130. Somnier FE. Increasing incidence of late-onset anti-AChR antibody-seropositive myasthenia gravis. Neurology. 2005;65(6):928–30.

    Article  CAS  PubMed  Google Scholar 

  131. Tackenberg B, Nitschke M, Willcox N, Ziegler A, Nessler S, Schumm F, et al. CD45 isoform expression in autoimmune myasthenia gravis. Autoimmunity. 2003;36(2):117–21.

    Article  CAS  PubMed  Google Scholar 

  132. Romi F, Gilhus NE, Varhaug JE, Myking A, Skeie GO, Aarli JA. Thymectomy and anti-muscle autoantibodies in late-onset myasthenia gravis. Eur J Neurol. 2002;9(1):55–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Marx MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marx, A., Ströbel, P., Weis, CA. (2018). Thymoma-Associated Myasthenia Gravis. In: Kaminski, H., Kusner, L. (eds) Myasthenia Gravis and Related Disorders. Current Clinical Neurology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-73585-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73585-6_8

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-73584-9

  • Online ISBN: 978-3-319-73585-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics