Epidemiology and Genetics of Myasthenia Gravis

  • Melissa Nel
  • Jeannine M. Heckmann
Part of the Current Clinical Neurology book series (CCNEU)


Myasthenia gravis (MG) appears to have a similar incidence among populations worldwide. While MG was previously considered to be an autoimmune disease of young woman, in the last three decades, it has increasingly been recognized to more commonly manifest in older people and predominantly men. Apart from these sex differences, there are racial differences. MuSK antibody-positive disease appears to be more frequent among those with African genetic ancestry. In addition, certain racial groups may be more at risk of developing a treatment-resistant ophthalmoplegic subphenotype of MG. Although many MG case-control association studies have been performed focusing on specific gene candidates, the advent of next-generation sequencing technology has allowed genome-wide association studies (GWAS) to assess gene and marker variants in larger population sets. Interestingly, these GWAS show the strongest associations with the HLA region. Overall, the GWAS studies are showing (a) that gene variants associated with MG are not rare in the population, (b) that there are different gene associations by MG subtype, and (c) that an individual’s genetic background is predicted to account for around 35% of MG heritability suggesting a substantial environmental contribution to MG risk.


Epidemiology Race Caucasian African Asian Subgroups Subphenotypes Genetic GWAS Epigenetics HLA 



MN and JMH have received financial support from the South African (SA) Medical Research Center (MRC) and the SA National Research Fund, as well as the AFM Telethon.


  1. 1.
    Bach JF. The etiology of autoimmune diseases: the case of myasthenia gravis. Ann N Y Acad Sci. 2012;1274:33–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Boldingh MI, Maniaol AH, Brunborg C, Dekker L, Heldal AT, Lipka AF, et al. Geographical distribution of myasthenia gravis in northern Europe—results from a population-based study from two countries. Neuroepidemiology. 2015;44(4):221–31.CrossRefPubMedGoogle Scholar
  3. 3.
    Carr AS, Cardwell CR, McCarron PO, McConville J. A systematic review of population based epidemiological studies in myasthenia gravis. BMC Neurol. 2010;10:46.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Draper IT. Myasthenia gravis. Postgrad Med J. 1965;41(476):356–70.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Somnier FE. Increasing incidence of late-onset anti-AChR antibody-seropositive myasthenia gravis. Neurology. 2005;65(6):928–30.CrossRefPubMedGoogle Scholar
  6. 6.
    Pedersen EG, Hallas J, Hansen K, Jensen PE, Gaist D. Late-onset myasthenia not on the increase: a nationwide register study in Denmark, 1996–2009. Eur J Neurol. 2013;20(2):309–14.CrossRefPubMedGoogle Scholar
  7. 7.
    Lai CH, Tseng HF. Nationwide population-based epidemiological study of myasthenia gravis in taiwan. Neuroepidemiology. 2010;35(1):66–71.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Matsui N, Nakane S, Nakagawa Y, Kondo K, Mitsui T, Matsumoto T, et al. Increasing incidence of elderly onset patients with myasthenia gravis in a local area of Japan. J Neurol Neurosurg Psychiatry. 2009;80(10):1168–71.CrossRefPubMedGoogle Scholar
  9. 9.
    Gattellari M, Goumas C, Worthington JM. A national epidemiological study of myasthenia gravis in Australia. Eur J Neurol. 2012;19(11):1413–20.CrossRefPubMedGoogle Scholar
  10. 10.
    Bateman KJ, Schinkel M, Little F, Liebenberg L, Vincent A, Heckmann JM. Incidence of seropositive myasthenia gravis in Cape Town and South Africa. S Afr Med J. 2007;97(10):959–62.PubMedGoogle Scholar
  11. 11.
    Mombaur B, Lesosky MR, Liebenberg L, Vreede H, Heckmann JM. Incidence of acetylcholine receptor-antibody-positive myasthenia gravis in South Africa. Muscle Nerve. 2015;51(4):533–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Vincent A, Clover L, Buckley C, Grimley Evans J, Rothwell PM. Evidence of underdiagnosis of myasthenia gravis in older people. J Neurol Neurosurg Psychiatry. 2003;74(8):1105–8.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    van der Watt JJ, Harrison TB, Benatar M, Heckmann JM. Polyneuropathy, anti-tuberculosis treatment and the role of pyridoxine in the HIV/AIDS era: a systematic review. Int J Tuberc Lung Dis. 2011;15(6):722–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Gilhus NE, Verschuuren JJ. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol. 2015;14(10):1023–36.CrossRefPubMedGoogle Scholar
  15. 15.
    Mombaur B, Heckmann JM. Myasthenia gravis is a rare but treatable disease. S Afr Med J. 2015;105(8):619.CrossRefPubMedGoogle Scholar
  16. 16.
    Phillips LH II, Torner JC. Epidemiologic evidence for a changing natural history of myasthenia gravis. Neurology. 1996;47(5):1233–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Alkhawajah NM, Oger J. Late-onset myasthenia gravis: a review when incidence in older adults keeps increasing. Muscle Nerve. 2013;48(5):705–10.CrossRefPubMedGoogle Scholar
  18. 18.
    Zisimopoulou P, Evangelakou P, Tzartos J, Lazaridis K, Zouvelou V, Mantegazza R, et al. A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. J Autoimmun. 2014;52:139–45.CrossRefPubMedGoogle Scholar
  19. 19.
    Pakzad Z, Aziz T, Oger J. Increasing incidence of myasthenia gravis among elderly in British Columbia, Canada. Neurology. 2011;76(17):1526–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Heldal AT, Eide GE, Gilhus NE, Romi F. Geographical distribution of a seropositive myasthenia gravis population. Muscle Nerve. 2012;45(6):815–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Benamer HT, Bredan A. The epidemiology of myasthenia gravis in Arab countries: a systematic review. Muscle Nerve. 2015;51(1):144–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Avidan N, Le Panse R, Berrih-Aknin S, Miller A. Genetic basis of myasthenia gravis—a comprehensive review. J Autoimmun. 2014;52:146–53.CrossRefPubMedGoogle Scholar
  23. 23.
    Somnier FE, Keiding N, Paulson OB. Epidemiology of myasthenia gravis in Denmark. A longitudinal and comprehensive population survey. Arch Neurol. 1991;48(7):733–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Compston DA, Vincent A, Newsom-Davis J, Batchelor JR. Clinical, pathological, HLA antigen and immunological evidence for disease heterogeneity in myasthenia gravis. Brain. 1980;103(3):579–601.CrossRefPubMedGoogle Scholar
  25. 25.
    Haliloglu G, Anlar B, Aysun S, Topcu M, Topaloglu H, Turanli G, et al. Gender prevalence in childhood multiple sclerosis and myasthenia gravis. J Child Neurol. 2002;17(5):390–2.CrossRefPubMedGoogle Scholar
  26. 26.
    Parr JR, Andrew MJ, Finnis M, Beeson D, Vincent A, Jayawant S. How common is childhood myasthenia? The UK incidence and prevalence of autoimmune and congenital myasthenia. Arch Dis Child. 2014;99(6):539–42.CrossRefPubMedGoogle Scholar
  27. 27.
    Popperud TH, Boldingh MI, Brunborg C, Faiz KW, Heldal AT, Maniaol AH, et al. Juvenile myasthenia gravis in Norway: a nationwide epidemiological study. Eur J Paediatr Neurol. 2017;21(2):312–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Oh SJ, Morgan MB, Lu L, Hatanaka Y, Hemmi S, Young A, et al. Racial differences in myasthenia gravis in Alabama. Muscle Nerve. 2009;39(3):328–32.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Huda S, Woodhall MR, Vincent A, Heckmann JM. Characteristics of acetylcholine-receptor-antibody-negative myasthenia gravis in a South African cohort. Muscle Nerve. 2016;54(6):1023–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Niks EH, Kuks JB, Verschuuren JJ. Epidemiology of myasthenia gravis with anti-muscle specific kinase antibodies in the Netherlands. J Neurol Neurosurg Psychiatry. 2007;78(4):417–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Yeh JH, Chen WH, Chiu HC, Vincent A. Low frequency of MuSK antibody in generalized seronegative myasthenia gravis among Chinese. Neurology. 2004;62(11):2131–2.CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang X, Yang M, Xu J, Zhang M, Lang B, Wang W, et al. Clinical and serological study of myasthenia gravis in HuBei Province, China. J Neurol Neurosurg Psychiatry. 2007;78(4):386–90.CrossRefPubMedGoogle Scholar
  33. 33.
    Hong Y, Skeie GO, Zisimopoulou P, Karagiorgou K, Tzartos SJ, Gao X, et al. Juvenile-onset myasthenia gravis: autoantibody status, clinical characteristics and genetic polymorphisms. J Neurol. 2017;264(5):955–62.CrossRefPubMedGoogle Scholar
  34. 34.
    Grob D, Arsura EL, Brunner NG, Namba T. The course of myasthenia gravis and therapies affecting outcome. Ann N Y Acad Sci. 1987;505:472–99.CrossRefPubMedGoogle Scholar
  35. 35.
    Heckmann JM, Hansen P, Van Toorn R, Lubbe E, Janse van Rensburg E, Wilmshurst JM. The characteristics of juvenile myasthenia gravis among South Africans. S Afr Med J. 2012;102(6):532–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Kim JH, Hwang JM, Hwang YS, Kim KJ, Chae J. Childhood ocular myasthenia gravis. Ophthalmology. 2003;110(7):1458–62.CrossRefPubMedGoogle Scholar
  37. 37.
    Maniaol AH, Elsais A, Lorentzen AR, Owe JF, Viken MK, Saether H, et al. Late onset myasthenia gravis is associated with HLA DRB1*15:01 in the Norwegian population. PLoS One. 2012;7(5):e36603.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Heckmann JM, Owen EP, Little F. Myasthenia gravis in South Africans: racial differences in clinical manifestations. Neuromuscul Disord. 2007;17(11–12):929–34.CrossRefPubMedGoogle Scholar
  39. 39.
    Berrih-Aknin S, Le Panse R. Myasthenia gravis: a comprehensive review of immune dysregulation and etiological mechanisms. J Autoimmun. 2014;52:90–100.CrossRefPubMedGoogle Scholar
  40. 40.
    Richards J, Howard JF Jr. Seronegative myasthenia gravis associated with malignant thymoma. Neuromuscul Disord. 2017;27(5):417–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Soltys J, Gong B, Kaminski HJ, Zhou Y, Kusner LL. Extraocular muscle susceptibility to myasthenia gravis: unique immunological environment? Ann N Y Acad Sci. 2008;1132:220–4.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Nel M, Jalali Sefid Dashti M, Gamieldien J, Heckmann JM. Exome sequencing identifies targets in the treatment-resistant ophthalmoplegic subphenotype of myasthenia gravis. Neuromuscul Disord. 2017;27(9):816–25.CrossRefPubMedGoogle Scholar
  43. 43.
    Chan JW, Orrison WW. Ocular myasthenia: a rare presentation with MuSK antibody and bilateral extraocular muscle atrophy. Br J Ophthalmol. 2007;91(6):842–3.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Heckmann JM, Uwimpuhwe H, Ballo R, Kaur M, Bajic VB, Prince S. A functional SNP in the regulatory region of the decay-accelerating factor gene associates with extraocular muscle pareses in myasthenia gravis. Genes Immun. 2010;11(1):1–10.CrossRefPubMedGoogle Scholar
  45. 45.
    Nel M, Buys JM, Rautenbach R, Mowla S, Prince S, Heckmann JM. The African-387 C>T TGFB1 variant is functional and associates with the ophthalmoplegic complication in juvenile myasthenia gravis. J Hum Genet. 2016;61(4):307–16.CrossRefPubMedGoogle Scholar
  46. 46.
    Pirskanen R. Genetic aspects in myasthenia gravis. A family study of 264 Finnish patients. Acta Neurol Scand. 1977;56(5):365–88.CrossRefPubMedGoogle Scholar
  47. 47.
    Namba T, Brunner NG, Brown SB, Muguruma M, Grob D. Familial myasthenia gravis. Report of 27 patients in 12 families and review of 164 patients in 73 families. Arch Neurol. 1971;25(1):49–60.CrossRefPubMedGoogle Scholar
  48. 48.
    Heckmann JM, Morrison KE, Emeryk-Szajewska B, Strugalska H, Bergoffen J, Willcox N, et al. Human muscle acetylcholine receptor alpha-subunit gene (CHRNA1) association with autoimmune myasthenia gravis in black, mixed-ancestry and Caucasian subjects. J Autoimmun. 1996;9(2):175–80.CrossRefPubMedGoogle Scholar
  49. 49.
    Goris A, Liston A. The immunogenetic architecture of autoimmune disease. Cold Spring Harb Perspect Biol. 2012;4(3):a007260.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Renton AE, Pliner HA, Provenzano C, Evoli A, Ricciardi R, Nalls MA, et al. A genome-wide association study of myasthenia gravis. JAMA Neurol. 2015;72(4):396–404.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Berrih-Aknin S. Myasthenia gravis: paradox versus paradigm in autoimmunity. J Autoimmun. 2014;52:1–28.CrossRefPubMedGoogle Scholar
  52. 52.
    Greve B, Hoffmann P, Illes Z, Rozsa C, Berger K, Weissert R, et al. The autoimmunity-related polymorphism PTPN22 1858C/T is associated with anti-titin antibody-positive myasthenia gravis. Hum Immunol. 2009;70(7):540–2.CrossRefPubMedGoogle Scholar
  53. 53.
    Vandiedonck C, Capdevielle C, Giraud M, Krumeich S, Jais JP, Eymard B, et al. Association of the PTPN22*R620W polymorphism with autoimmune myasthenia gravis. Ann Neurol. 2006;59(2):404–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Saruhan-Direskeneli G, Hughes T, Yilmaz V, Durmus H, Adler A, Alahgholi-Hajibehzad M, et al. Genetic heterogeneity within the HLA region in three distinct clinical subgroups of myasthenia gravis. Clin Immunol. 2016;166–167:81–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Provenzano C, Ricciardi R, Scuderi F, Maiuri MT, Maestri M, La Carpia F, et al. PTPN22 and myasthenia gravis: replication in an Italian population and meta-analysis of literature data. Neuromuscul Disord. 2012;22(2):131–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Gregersen PK, Kosoy R, Lee AT, Lamb J, Sussman J, McKee D, et al. Risk for myasthenia gravis maps to a (151) pro-->Ala change in TNIP1 and to human leukocyte antigen-B*08. Ann Neurol. 2012;72(6):927–35.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Seldin MF, Alkhairy OK, Lee AT, Lamb JA, Sussman J, Pirskanen-Matell R, et al. Genome-wide association study of late-onset myasthenia gravis: confirmation of TNFRSF11A, and identification of ZBTB10 and three distinct HLA associations. Mol Med. 2015;21(1):769–81. [Epub ahead of print].CrossRefPubMedCentralGoogle Scholar
  58. 58.
    Kaya GA, Coskun AN, Yilmaz V, Oflazer P, Gulsen-Parman Y, Aysal F, et al. The association of PTPN22 R620W polymorphism is stronger with late-onset AChR-myasthenia gravis in Turkey. PLoS One. 2014;9(8):e104760.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Viken MK, Sollid HD, Joner G, Dahl-Jorgensen K, Ronningen KS, Undlien DE, et al. Polymorphisms in the cathepsin L2 (CTSL2) gene show association with type 1 diabetes and early-onset myasthenia gravis. Hum Immunol. 2007;68(9):748–55.CrossRefPubMedGoogle Scholar
  60. 60.
    Avidan N, Le Panse R, Harbo HF, Bernasconi P, Poulas K, Ginzburg E, et al. VAV1 and BAFF, via NFkappaB pathway, are genetic risk factors for myasthenia gravis. Ann Clin Transl Neurol. 2014;1(5):329–39.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Pal Z, Varga Z, Semsei A, Remenyi V, Rozsa C, Falus A, et al. Interleukin-4 receptor alpha polymorphisms in autoimmune myasthenia gravis in a Caucasian population. Hum Immunol. 2012;73(2):193–5.CrossRefPubMedGoogle Scholar
  62. 62.
    Huang D, Xia S, Zhou Y, Pirskanen R, Liu L, Lefvert AK. No evidence for interleukin-4 gene conferring susceptibility to myasthenia gravis. J Neuroimmunol. 1998;92(1–2):208–11.CrossRefPubMedGoogle Scholar
  63. 63.
    Alseth EH, Nakkestad HL, Aarseth J, Gilhus NE, Skeie GO. Interleukin-10 promoter polymorphisms in myasthenia gravis. J Neuroimmunol. 2009;210(1–2):63–6.CrossRefPubMedGoogle Scholar
  64. 64.
    Yilmaz V, Tutuncu Y, Baris Hasbal N, Parman Y, Serdaroglu P, Deymeer F, et al. Polymorphisms of interferon-gamma, interleukin-10, and interleukin-12 genes in myasthenia gravis. Hum Immunol. 2007;68(6):544–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Chuang WY, Strobel P, Bohlender-Willke AL, Rieckmann P, Nix W, Schalke B, et al. Late-onset myasthenia gravis—CTLA4(low) genotype association and low-for-age thymic output of naive T cells. J Autoimmun. 2014;52:122–9.CrossRefPubMedGoogle Scholar
  66. 66.
    Li HF, Hong Y, Zhang X, Xie Y, Skeie GO, Hao HJ, et al. Gene polymorphisms for both auto-antigen and immune-modulating proteins are associated with the susceptibility of autoimmune myasthenia gravis. Mol Neurobiol. 2017;54(6):4771–80. [Epub ahead of print].CrossRefPubMedGoogle Scholar
  67. 67.
    Garchon HJ, Djabiri F, Viard JP, Gajdos P, Bach JF. Involvement of human muscle acetylcholine receptor alpha-subunit gene (CHRNA) in susceptibility to myasthenia gravis. Proc Natl Acad Sci U S A. 1994;91(11):4668–72.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Giraud M, Taubert R, Vandiedonck C, Ke X, Levi-Strauss M, Pagani F, et al. An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus. Nature. 2007;448(7156):934–7.CrossRefPubMedGoogle Scholar
  69. 69.
    Giraud M, Eymard B, Tranchant C, Gajdos P, Garchon HJ. Association of the gene encoding the delta-subunit of the muscle acetylcholine receptor (CHRND) with acquired autoimmune myasthenia gravis. Genes Immun. 2004;5(1):80–3.CrossRefPubMedGoogle Scholar
  70. 70.
    Janer M, Cowland A, Picard J, Campbell D, Pontarotti P, Newsom-Davis J, et al. A susceptibility region for myasthenia gravis extending into the HLA-class I sector telomeric to HLA-C. Hum Immunol. 1999;60(9):909–17.CrossRefPubMedGoogle Scholar
  71. 71.
    Shinomiya N, Nomura Y, Segawa M. A variant of childhood-onset myasthenia gravis: HLA typing and clinical characteristics in Japan. Clin Immunol. 2004;110(2):154–8.CrossRefPubMedGoogle Scholar
  72. 72.
    Zhu WH, Lu JH, Lin J, Xi JY, Lu J, Luo SS, et al. HLA-DQA1*03:02/DQB1*03:03:02 is strongly associated with susceptibility to childhood-onset ocular myasthenia gravis in Southern Han Chinese. J Neuroimmunol. 2012;247(1–2):81–5.CrossRefPubMedGoogle Scholar
  73. 73.
    Hawkins BR, Yu YL, Wong V, Woo E, Ip MS, Dawkins RL. Possible evidence for a variant of myasthenia gravis based on HLA and acetylcholine receptor antibody in Chinese patients. Q J Med. 1989;70(263):235–41.PubMedGoogle Scholar
  74. 74.
    Chen WH, Chiu HC, Hseih RP. Association of HLA-Bw46DR9 combination with juvenile myasthenia gravis in Chinese. J Neurol Neurosurg Psychiatry. 1993;56(4):382–5.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Testi M, Terracciano C, Guagnano A, Testa G, Marfia GA, Pompeo E, et al. Association of HLA-DQB1 *05:02 and DRB1 *16 alleles with late-onset, Nonthymomatous, AChR-Ab-positive myasthenia gravis. Autoimmune Dis. 2012;2012:541760.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Alahgholi-Hajibehzad M, Yilmaz V, Gulsen-Parman Y, Aysal F, Oflazer P, Deymeer F, et al. Association of HLA-DRB1 *14, -DRB1 *16 and -DQB1 *05 with MuSK-myasthenia gravis in patients from Turkey. Hum Immunol. 2013;74(12):1633–5.CrossRefPubMedGoogle Scholar
  77. 77.
    Niks EH, Kuks JB, Roep BO, Haasnoot GW, Verduijn W, Ballieux BE, et al. Strong association of MuSK antibody-positive myasthenia gravis and HLA-DR14-DQ5. Neurology. 2006;66(11):1772–4.CrossRefPubMedGoogle Scholar
  78. 78.
    Bartoccioni E, Scuderi F, Augugliaro A, Chiatamone Ranieri S, Sauchelli D, Alboino P, et al. HLA class II allele analysis in MuSK-positive myasthenia gravis suggests a role for DQ5. Neurology. 2009;72(2):195–7.CrossRefPubMedGoogle Scholar
  79. 79.
    Nikolic AV, Andric ZP, Simonovic RB, Rakocevic Stojanovic VM, Basta IZ, Bojic SD, et al. High frequency of DQB1*05 and absolute absence of DRB1*13 in muscle-specific tyrosine kinase positive myasthenia gravis. Eur J Neurol. 2015;22(1):59–63.CrossRefPubMedGoogle Scholar
  80. 80.
    Lincoln MR, Ramagopalan SV, Chao MJ, Herrera BM, Deluca GC, Orton SM, et al. Epistasis among HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci determines multiple sclerosis susceptibility. Proc Natl Acad Sci U S A. 2009;106(18):7542–7.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Christiansen FT, Pollack MS, Garlepp MJ, Dawkins RL. Myasthenia gravis and HLA antigens in American blacks and other races. J Neuroimmunol. 1984;7(2–3):121–9.CrossRefPubMedGoogle Scholar
  82. 82.
    Vandiedonck C, Beaurain G, Giraud M, Hue-Beauvais C, Eymard B, Tranchant C, et al. Pleiotropic effects of the 8.1 HLA haplotype in patients with autoimmune myasthenia gravis and thymus hyperplasia. Proc Natl Acad Sci U S A. 2004;101(43):15464–9.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Donmez B, Ozakbas S, Oktem MA, Gedizlioglu M, Coker I, Genc A, et al. HLA genotypes in Turkish patients with myasthenia gravis: comparison with multiple sclerosis patients on the basis of clinical subtypes and demographic features. Hum Immunol. 2004;65(7):752–7.CrossRefPubMedGoogle Scholar
  84. 84.
    Hajeer AH, Sawidan FA, Bohlega S, Saleh S, Sutton P, Shubaili A, et al. HLA class I and class II polymorphisms in Saudi patients with myasthenia gravis. Int J Immunogenet. 2009;36(3):169–72.CrossRefPubMedGoogle Scholar
  85. 85.
    Giraud M, Beaurain G, Yamamoto AM, Eymard B, Tranchant C, Gajdos P, et al. Linkage of HLA to myasthenia gravis and genetic heterogeneity depending on anti-titin antibodies. Neurology. 2001;57(9):1555–60.CrossRefPubMedGoogle Scholar
  86. 86.
    Fekih-Mrissa N, Klai S, Zaouali J, Gritli N, Mrissa R. Association of HLA-DR/DQ polymorphism with myasthenia gravis in Tunisian patients. Clin Neurol Neurosurg. 2013;115(1):32–6.CrossRefPubMedGoogle Scholar
  87. 87.
    Baggi F, Antozzi C, Andreetta F, Confalonieri P, Ciusani E, Begovich AB, et al. Identification of a novel HLA class II association with DQB1*0502 in an Italian myasthenic population. Ann N Y Acad Sci. 1998;841:355–9.CrossRefPubMedGoogle Scholar
  88. 88.
    Vandiedonck C, Raffoux C, Eymard B, Tranchant C, Dulmet E, Krumeich S, et al. Association of HLA-A in autoimmune myasthenia gravis with thymoma. J Neuroimmunol. 2009;210(1–2):120–3.CrossRefPubMedGoogle Scholar
  89. 89.
    Kanai T, Uzawa A, Kawaguchi N, Sakamaki T, Yoshiyama Y, Himuro K, et al. HLA-DRB1*14 and DQB1*05 are associated with Japanese anti-MuSK antibody-positive myasthenia gravis patients. J Neurol Sci. 2016;363:116–8.CrossRefPubMedGoogle Scholar
  90. 90.
    Ehsan S, Amirzargar A, Yekaninejad MS, Mahmoudi M, Mehravar S, Moradi B, et al. Association of HLA class II (DRB1, DQA1, DQB1) alleles and haplotypes with myasthenia gravis and its subgroups in the Iranian population. J Neurol Sci. 2015;359(1–2):335–42.CrossRefPubMedGoogle Scholar
  91. 91.
    Marsh SG, Albert ED, Bodmer WF, Bontrop RE, Dupont B, Erlich HA, et al. Nomenclature for factors of the HLA system, 2010. Tissue Antigens. 2010;75(4):291–455.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Holdsworth R, Hurley CK, Marsh SG, Lau M, Noreen HJ, Kempenich JH, et al. The HLA dictionary 2008: a summary of HLA-A, -B, -C, -DRB1/3/4/5, and -DQB1 alleles and their association with serologically defined HLA-A, -B, -C, -DR, and -DQ antigens. Tissue Antigens. 2009;73(2):95–170.CrossRefPubMedGoogle Scholar
  93. 93.
    Klein CJ, Benarroch EE. Epigenetic regulation: basic concepts and relevance to neurologic disease. Neurology. 2014;82(20):1833–40.CrossRefPubMedGoogle Scholar
  94. 94.
    Dragin N, Bismuth J, Cizeron-Clairac G, Biferi MG, Berthault C, Serraf A, et al. Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases. J Clin Invest. 2016;126(4):1525–37.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Coppede F, Ricciardi R, Denaro M, De Rosa A, Provenzano C, Bartoccioni E, et al. Association of the DNMT3B -579G>T polymorphism with risk of thymomas in patients with myasthenia gravis. PLoS One. 2013;8(11):e80846.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Huang RS, Gamazon ER, Ziliak D, Wen Y, Im HK, Zhang W, et al. Population differences in microRNA expression and biological implications. RNA Biol. 2011;8(4):692–701.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Punga T, Bartoccioni E, Lewandowska M, Damato V, Evoli A, Punga AR. Disease specific enrichment of circulating let-7 family microRNA in MuSK+ myasthenia gravis. J Neuroimmunol. 2016;292:21–6.Google Scholar
  98. 98.
    Punga T, Le Panse R, Andersson M, Truffault F, Berrih-Aknin S, Punga AR. Circulating miRNAs in myasthenia gravis: miR-150-5p as a new potential biomarker. Ann Clin Transl Neurol. 2014;1(1):49–58.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Neurology Research Group, Department of MedicineGroote Schuur Hospital and University of Cape TownCape TownSouth Africa
  2. 2.Division of Neurology, Department of MedicineGroote Schuur Hospital, Groote Schuur Hospital and University of Cape TownCape TownSouth Africa

Personalised recommendations