Skip to main content

Immunopathogenesis of Myasthenia Gravis

  • Chapter
  • First Online:
Myasthenia Gravis and Related Disorders

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

The development of myasthenia gravis (MG), similar to the other autoimmune diseases, combines a predisposing genetic background, immune imbalance, and triggering factors. The etiological hypotheses are discussed, and the role of the thymus is detailed in the context of the recent results of the thymectomy trial. The main defects of immune regulation, including the role of B cells, the immune imbalance between Treg and Th17 cells, and the role of follicular helper cells, are reviewed. Together, this book chapter summarizes the heterogeneity of MG patients and the genetic, immunological, and environmental mechanisms that play a potential role in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patrick J, Lindstrom J. Autoimmune response to acetylcholine receptor. Science. 1973;180:871–2.

    Article  CAS  PubMed  Google Scholar 

  2. Fambrough DM, Drachman DB, Satyamurti S. Neuromuscular junction in myasthenia gravis: decreased acetylcholine receptors. Science. 1973;182:293–5.

    Article  CAS  PubMed  Google Scholar 

  3. Appel SH, Almon RR, Levy N. Acetylcholine receptor antibodies in myasthenia gravis. N Engl J Med. 1975;293:760–1.

    Article  CAS  PubMed  Google Scholar 

  4. Aharonov A, Abramsky O, Tarrab-Hazdai R, Fuchs S. Humoral antibodies to acetylcholine receptor in patients with myasthenia gravis. Lancet. 1975;2:340–2.

    Article  CAS  PubMed  Google Scholar 

  5. Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med. 2001;7:365–8.

    Article  CAS  PubMed  Google Scholar 

  6. Higuchi O, Hamuro J, Motomura M, Yamanashi Y. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol. 2011;69:418–22.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang B, Tzartos JS, Belimezi M, Ragheb S, Bealmear B, Lewis RA, et al. Autoantibodies to lipoprotein-related protein 4 in patients with double-seronegative myasthenia gravis. Arch Neurol. 2012;69:445–51.

    Article  PubMed  Google Scholar 

  8. Berrih-Aknin S. Myasthenia Gravis: paradox versus paradigm in autoimmunity. J Autoimmun. 2014;52:1–28.

    Article  CAS  PubMed  Google Scholar 

  9. Berrih-Aknin S, Le Panse R. Myasthenia gravis: a comprehensive review of immune dysregulation and etiological mechanisms. J Autoimmun. 2014;52:90–100.

    Article  CAS  PubMed  Google Scholar 

  10. Zisimopoulou P, Evangelakou P, Tzartos J, Lazaridis K, Zouvelou V, Mantegazza R, et al. A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. J Autoimmun. 2014;52:139–45.

    Article  CAS  PubMed  Google Scholar 

  11. Unwin N. Nicotinic acetylcholine receptor and the structural basis of neuromuscular transmission: insights from Torpedo postsynaptic membranes. Q Rev Biophys. 2013;46:283–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martyn JA, Fagerlund MJ, Eriksson LI. Basic principles of neuromuscular transmission. Anaesthesia. 2009;64(Suppl 1):1–9.

    Article  CAS  PubMed  Google Scholar 

  13. DeChiara TM, Bowen DC, Valenzuela DM, Simmons MV, Poueymirou WT, Thomas S, et al. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell. 1996;85:501–12.

    Article  CAS  PubMed  Google Scholar 

  14. Hesser BA, Henschel O, Witzemann V. Synapse disassembly and formation of new synapses in postnatal muscle upon conditional inactivation of MuSK. Mol Cell Neurosci. 2006;31:470–80.

    Article  CAS  PubMed  Google Scholar 

  15. Kim N, Stiegler AL, Cameron TO, Hallock PT, Gomez AM, Huang JH, et al. Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell. 2008;135:334–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Beeson D. Congenital myasthenic syndromes: recent advances. Curr Opin Neurol. 2016;29:565–71.

    Article  CAS  PubMed  Google Scholar 

  17. Kucukerden M, Huda R, Tuzun E, Yilmaz A, Skriapa L, Trakas N, et al. MuSK induced experimental autoimmune myasthenia gravis does not require IgG1 antibody to MuSK. J Neuroimmunol. 2016;295–s296:84–92.

    Article  CAS  Google Scholar 

  18. Leite MI, Jacob S, Viegas S, Cossins J, Clover L, Morgan BP, et al. IgG1 antibodies to acetylcholine receptors in ‘seronegative’ myasthenia gravis. Brain. 2008;131:1940–52.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Binks S, Vincent A, Palace J. Myasthenia gravis: a clinical-immunological update. J Neurol. 2016;263:826–34.

    Article  CAS  PubMed  Google Scholar 

  20. Hong Y, Zisimopoulou P, Trakas N, Karagiorgou K, Stergiou C, Skeie GO, et al. Multiple antibody detection in ‘seronegative’ myasthenia gravis patients. Eur J Neurol. 2017;24:844–50.

    Article  CAS  PubMed  Google Scholar 

  21. Berrih-Aknin S. Role of the thymus in autoimmune myasthenia gravis. Clin Exp Neuroimmunol. 2016;7:226–37.

    Article  CAS  Google Scholar 

  22. Truffault F, de Montpreville V, Eymard B, Sharshar T, Le Panse R, Berrih-Aknin S. Thymic Germinal Centers and Corticosteroids In Myasthenia Gravis: An Immunopathological Study in 1035 cases and a critical review. Clin Rev Allergy Immunol. 2017;52:108–24.

    Article  CAS  PubMed  Google Scholar 

  23. Le Panse R, Berrih-Aknin S. Autoimmune myasthenia gravis: autoantibody mechanisms and new developments on immune regulation. Curr Opin Neurol. 2013;26:569–76.

    Article  PubMed  CAS  Google Scholar 

  24. Tuzun E, Christadoss P. Complement associated pathogenic mechanisms in myasthenia gravis. Autoimmun Rev. 2013 Jul;12(9):904–11.

    Article  CAS  PubMed  Google Scholar 

  25. Pestronk A, Drachman DB, Self SG. Measurement of junctional acetylcholine receptors in myasthenia gravis: clinical correlates. Muscle Nerve. 1985;8:245–51.

    Article  CAS  PubMed  Google Scholar 

  26. Nakano S, Engel AG. Myasthenia gravis: quantitative immunocytochemical analysis of inflammatory cells and detection of complement membrane attack complex at the end-plate in 30 patients. Neurology. 1993;43:1167–72.

    Article  CAS  PubMed  Google Scholar 

  27. Guyon T, Levasseur P, Truffault F, Cottin C, Gaud C, Berrih-Aknin S. Regulation of acetylcholine receptor alpha subunit variants in human myasthenia gravis. Quantification of steady-state levels of messenger RNA in muscle biopsy using the polymerase chain reaction. J Clin Invest. 1994;94:16–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guyon T, Wakkach A, Poea S, Mouly V, Klingel-Schmitt I, Levasseur P, et al. Regulation of acetylcholine receptor gene expression in human myasthenia gravis muscles. Evidences for a compensatory mechanism triggered by receptor loss. J Clin Invest. 1998;102:249–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Evoli A, Tonali PA, Padua L, Monaco ML, Scuderi F, Batocchi AP, et al. Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis. Brain. 2003;126:2304–11.

    Article  PubMed  Google Scholar 

  30. Guptill JT, Sanders DB, Evoli A. Anti-MuSK antibody myasthenia gravis: clinical findings and response to treatment in two large cohorts. Muscle Nerve. 2011;44:36–40.

    Article  PubMed  Google Scholar 

  31. Lavrnic D, Losen M, Vujic A, De Baets M, Hajdukovic LJ, Stojanovic V, et al. The features of myasthenia gravis with autoantibodies to MuSK. J Neurol Neurosurg Psychiatry. 2005;76:1099–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leite MI, Strobel P, Jones M, Micklem K, Moritz R, Gold R, et al. Fewer thymic changes in MuSK antibody-positive than in MuSK antibody-negative MG. Ann Neurol. 2005;57:444–8.

    Article  PubMed  Google Scholar 

  33. Huijbers MG, Zhang W, Klooster R, Niks EH, Friese MB, Straasheijm KR, et al. MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding between MuSK and Lrp4. Proc Natl Acad Sci U S A. 2013;110:20783–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Boneva N, Frenkian-Cuvelier M, Bidault J, Brenner T, Berrih-Aknin S. Major pathogenic effects of anti-MuSK antibodies in myasthenia gravis. J Neuroimmunol. 2006;177:119–31.

    Article  CAS  PubMed  Google Scholar 

  35. Morsch M, Reddel SW, Ghazanfari N, Toyka KV, Phillips WD. Muscle specific kinase autoantibodies cause synaptic failure through progressive wastage of postsynaptic acetylcholine receptors. Exp Neurol. 2012;237:286–95.

    Article  CAS  PubMed  Google Scholar 

  36. Pevzner A, Schoser B, Peters K, Cosma NC, Karakatsani A, Schalke B, et al. Anti-LRP4 autoantibodies in AChR- and MuSK-antibody-negative myasthenia gravis. J Neurol. 2012;259:427–35.

    Article  CAS  PubMed  Google Scholar 

  37. Shen C, Lu Y, Zhang B, Figueiredo D, Bean J, Jung J, et al. Antibodies against low-density lipoprotein receptor-related protein 4 induce myasthenia gravis. J Clin Invest. 2013;123:5190–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cossins J, Belaya K, Zoltowska K, Koneczny I, Maxwell S, Jacobson L, et al. The search for new antigenic targets in myasthenia gravis. Ann N Y Acad Sci. 2012;1275:123–8.

    Article  CAS  PubMed  Google Scholar 

  39. Gasperi C, Melms A, Schoser B, Zhang Y, Meltoranta J, Risson V, et al. Anti-agrin autoantibodies in myasthenia gravis. Neurology. 2014;82:1976–83.

    Article  CAS  PubMed  Google Scholar 

  40. Cortes-Vicente E, Gallardo E, Martinez MA, Diaz-Manera J, Querol L, Rojas-Garcia R, et al. Clinical characteristics of patients with double-seronegative myasthenia gravis and antibodies to cortactin. JAMA Neurol. 2016;73:1099–104.

    Article  PubMed  Google Scholar 

  41. Jacob S, Viegas S, Leite MI, Webster R, Cossins J, Kennett R, et al. Presence and pathogenic relevance of antibodies to clustered acetylcholine receptor in ocular and generalized myasthenia gravis. Arch Neurol. 2012;69:994–1001.

    Article  PubMed  Google Scholar 

  42. Marx A, Pfister F, Schalke B, Saruhan-Direskeneli G, Melms A, Strobel P. The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun Rev. 2013 Jul;12(9):875–84.

    Article  CAS  PubMed  Google Scholar 

  43. Berrih-Aknin S, Morel E, Raimond F, Safar D, Gaud C, Binet JP, et al. The role of the thymus in myasthenia gravis: immunohistological and immunological studies in 115 cases. Ann N Y Acad Sci. 1987;505:50–70.

    Article  CAS  PubMed  Google Scholar 

  44. Filosso PL, Galassi C, Ruffini E, Margaritora S, Bertolaccini L, Casadio C, et al. Thymoma and the increased risk of developing extrathymic malignancies: a multicentre study. Eur J Cardiothorac Surg. 2013;44:219–24; discussion 224.

    Article  PubMed  Google Scholar 

  45. Bertho JM, Demarquay C, Moulian N, Van Der Meeren A, Berrih-Aknin S, Gourmelon P. Phenotypic and immunohistological analyses of the human adult thymus: evidence for an active thymus during adult life. Cell Immunol. 1997;179:30–40.

    Article  CAS  PubMed  Google Scholar 

  46. Berrih-Aknin S, Ruhlmann N, Bismuth J, Cizeron-Clairac G, Zelman E, Shachar I, et al. CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia. Ann Neurol. 2009;66:521–31.

    Article  CAS  PubMed  Google Scholar 

  47. Weiss JM, Cufi P, Bismuth J, Eymard B, Fadel E, Berrih-Aknin S, et al. SDF-1/CXCL12 recruits B cells and antigen-presenting cells to the thymus of autoimmune myasthenia gravis patients. Immunobiology. 2013;218:373–81.

    Article  CAS  PubMed  Google Scholar 

  48. Berrih S, Morel E, Gaud C, Raimond F, Le Brigand H, Bach JF. Anti-AChR antibodies, thymic histology, and T cell subsets in myasthenia gravis. Neurology. 1984;34:66–71.

    Article  CAS  PubMed  Google Scholar 

  49. Willcox HN, Newsom-Davis J, Calder LR. Greatly increased autoantibody production in myasthenia gravis by thymocyte suspensions prepared with proteolytic enzymes. Clin Exp Immunol. 1983;54:378–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lisak RP, Levinson AI, Zweiman B, Kornstein MJ. Antibodies to acetylcholine receptor and tetanus toxoid: in vitro synthesis by thymic lymphocytes. J Immunol. 1986;137:1221–5.

    CAS  PubMed  Google Scholar 

  51. Leprince C, Cohen-Kaminsky S, Berrih-Aknin S, Vernet-Der Garabedian B, Treton D, Galanaud P, et al. Thymic B cells from myasthenia gravis patients are activated B cells. Phenotypic and functional analysis. J Immunol. 1990;145:2115–22.

    CAS  PubMed  Google Scholar 

  52. Schonbeck S, Padberg F, Hohlfeld R, Wekerle H. Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice. A new model of myasthenia gravis. J Clin Invest. 1992;90:245–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Aissaoui A, Klingel-Schmitt I, Couderc J, Chateau D, Romagne F, Jambou F, et al. Prevention of autoimmune attack by targeting specific T-cell receptors in a severe combined immunodeficiency mouse model of myasthenia gravis. Ann Neurol. 1999;46:559–67.

    Article  CAS  PubMed  Google Scholar 

  54. Sudres M, Maurer M, Robinet M, Bismuth J, Truffault F, Girard D, et al. Preconditioned mesenchymal stem cells treat myasthenia gravis in a humanized preclinical model. JCI Insight. 2017;2:e89665.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wolfe GI, Kaminski HJ, Aban IB, Minisman G, Kuo HC, Marx A, et al. Randomized trial of thymectomy in myasthenia gravis. N Engl J Med. 2016;375:511–22.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yang J, Liu C, Li T, Li C. Prognosis of thymectomy in myasthenia gravis patients with thymus hyperplasia. Int J Neurosci. 2017;127(9):785–9.

    Article  PubMed  Google Scholar 

  57. Anaya JM. Common mechanisms of autoimmune diseases (the autoimmune tautology). Autoimmun Rev. 2012;11:781–4.

    Article  CAS  PubMed  Google Scholar 

  58. Newsom-Davis J, Wilson SG, Vincent A, Ward CD. Long-term effects of repeated plasma exchange in myasthenia gravis. Lancet. 1979;1:464–8.

    Article  CAS  PubMed  Google Scholar 

  59. Diaz-Manera J, Martinez-Hernandez E, Querol L, Klooster R, Rojas-Garcia R, Suarez-Calvet X, et al. Long-lasting treatment effect of rituximab in MuSK myasthenia. Neurology. 2012;78:189–93.

    Article  CAS  PubMed  Google Scholar 

  60. Le Panse R, Cizeron-Clairac G, Bismuth J, Berrih-Aknin S. Microarrays reveal distinct gene signatures in the thymus of seropositive and seronegative myasthenia gravis patients and the role of CC chemokine ligand 21 in thymic hyperplasia. J Immunol. 2006;177:7868–79.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Meraouna A, Cizeron-Clairac G, Panse RL, Bismuth J, Truffault F, Tallaksen C, et al. The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis. Blood. 2006;108:432–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Weiss JM, Robinet M, Aricha R, Cufi P, Villeret B, Lantner F, et al. Novel CXCL13 transgenic mouse: inflammation drives pathogenic effect of CXCL13 in experimental myasthenia gravis. Oncotarget. 2016;7:7550–62.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Karim MR, Zhang HY, Yuan J, Sun Q, Wang YF, Regulatory B. Cells in seropositive myasthenia gravis versus healthy controls. Front Neurol. 2017;8:43.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Guptill JT, Yi JS, Sanders DB, Guidon AC, Juel VC, Massey JM, et al. Characterization of B cells in muscle-specific kinase antibody myasthenia gravis. Neurol Neuroimmunol Neuroinflamm. 2015;2:e77.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yi JS, Russo MA, Massey JM, Juel V, Hobson-Webb LD, Gable K, et al. B10 cell frequencies and suppressive capacity in myasthenia gravis are associated with disease severity. Front Neurol. 2017;8:34.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Vander Heiden JA, Stathopoulos P, Zhou JQ, Chen L, Gilbert TJ, Bolen CR, et al. Dysregulation of B cell repertoire formation in myasthenia gravis patients revealed through deep sequencing. J Immunol. 2017;198:1460–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kang SY, Kang CH, Lee KH. B-cell-activating factor is elevated in serum of patients with myasthenia gravis. Muscle Nerve. 2016;54:1030–3.

    Article  CAS  PubMed  Google Scholar 

  68. Cufi P, Dragin N, Ruhlmann N, Weiss JM, Fadel E, Serraf A, et al. Central role of interferon-beta in thymic events leading to myasthenia gravis. J Autoimmun. 2014;52:44–52.

    Article  CAS  PubMed  Google Scholar 

  69. Hori S, Takahashi T, Sakaguchi S. Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv Immunol. 2003;81:331–71.

    Article  CAS  PubMed  Google Scholar 

  70. Bedoya SK, Lam B, Lau K, Larkin J III. Th17 cells in immunity and autoimmunity. Clin Dev Immunol. 2013;2013:986789.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Balandina A, Lecart S, Dartevelle P, Saoudi A, Berrih-Aknin S. Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood. 2005;105:735–41.

    Article  CAS  PubMed  Google Scholar 

  72. Matsui N, Nakane S, Saito F, Ohigashi I, Nakagawa Y, Kurobe H, et al. Undiminished regulatory T cells in the thymus of patients with myasthenia gravis. Neurology. 2010;74:816–20.

    Article  CAS  PubMed  Google Scholar 

  73. Battaglia A, Di Schino C, Fattorossi A, Scambia G, Evoli A. Circulating CD4+CD25+ T regulatory and natural killer T cells in patients with myasthenia gravis: a flow cytometry study. J Biol Regul Homeost Agents. 2005;19:54–62.

    CAS  PubMed  Google Scholar 

  74. Thiruppathi M, Rowin J, Li Jiang Q, Sheng JR, Prabhakar BS, Meriggioli MN. Functional defect in regulatory T cells in myasthenia gravis. Ann N Y Acad Sci. 2012;1274:68–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Luther C, Adamopoulou E, Stoeckle C, Brucklacher-Waldert V, Rosenkranz D, Stoltze L, et al. Prednisolone treatment induces tolerogenic dendritic cells and a regulatory milieu in myasthenia gravis patients. J Immunol. 2009;183:841–8.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang Y, Wang HB, Chi LJ, Wang WZ. The role of FoxP3+CD4+CD25hi Tregs in the pathogenesis of myasthenia gravis. Immunol Lett. 2009;122:52–7.

    Article  CAS  PubMed  Google Scholar 

  77. Gradolatto A, Nazzal D, Truffault F, Bismuth J, Fadel E, Foti M, et al. Both Treg cells and Tconv cells are defective in the Myasthenia gravis thymus: roles of IL-17 and TNF-alpha. J Autoimmun. 2014;52:53–63.

    Article  CAS  PubMed  Google Scholar 

  78. Mountz JD, Wang JH, Xie S, Hsu HC. Cytokine regulation of B-cell migratory behavior favors formation of germinal centers in autoimmune disease. Discov Med. 2011;11:76–85.

    PubMed  PubMed Central  Google Scholar 

  79. Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med. 2000;192:1553–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med. 2000;192:1545–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Forster R, Emrich T, Kremmer E, Lipp M. Expression of the G-protein--coupled receptor BLR1 defines mature, recirculating B cells and a subset of T-helper memory cells. Blood. 1994;84:830–40.

    CAS  PubMed  Google Scholar 

  82. Saito R, Onodera H, Tago H, Suzuki Y, Shimizu M, Matsumura Y, et al. Altered expression of chemokine receptor CXCR5 on T cells of myasthenia gravis patients. J Neuroimmunol. 2005;170:172–8.

    Article  CAS  PubMed  Google Scholar 

  83. Luo C, Li Y, Liu W, Feng H, Wang H, Huang X, et al. Expansion of circulating counterparts of follicular helper T cells in patients with myasthenia gravis. J Neuroimmunol. 2013;256:55–61.

    Article  CAS  PubMed  Google Scholar 

  84. Xin N, Fu L, Shao Z, Guo M, Zhang X, Zhang Y, et al. RNA interference targeting Bcl-6 ameliorates experimental autoimmune myasthenia gravis in mice. Mol Cell Neurosci. 2014;58:85–94.

    Article  CAS  PubMed  Google Scholar 

  85. Wen Y, Yang B, Lu J, Zhang J, Yang H, Li J. Imbalance of circulating CD4(+)CXCR5(+)FOXP3(+) Tfr-like cells and CD4(+)CXCR5(+)FOXP3(-) Tfh-like cells in myasthenia gravis. Neurosci Lett. 2016;630:176–82.

    Article  CAS  PubMed  Google Scholar 

  86. Zhang CJ, Gong Y, Zhu W, Qi Y, Yang CS, Fu Y, et al. Augmentation of circulating follicular helper T Cells and their impact on autoreactive B cells in myasthenia gravis. J Immunol. 2016;197(7):2610.

    Article  CAS  PubMed  Google Scholar 

  87. Dragin N, Bismuth J, Cizeron-Clairac G, Biferi MG, Berthault C, Serraf A, et al. Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases. J Clin Invest. 2016;126:1525–37.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ramanujam R, Pirskanen R, Ramanujam S, Hammarstrom L. Utilizing twins concordance rates to infer the predisposition to myasthenia gravis. Twin Res Hum Genet. 2011;14:129–36.

    Article  PubMed  Google Scholar 

  89. Mamrut S, Avidan N, Truffault F, Staun-Ram E, Sharshar T, Eymard B, et al. Methylome and transcriptome profiling in Myasthenia Gravis monozygotic twins. J Autoimmun. 2017;82:62–73.

    Article  CAS  PubMed  Google Scholar 

  90. Sumitomo S, Fujio K, Okamura T, Yamamoto K. Egr2 and Egr3 are the unique regulators for systemic autoimmunity. JAKSTAT. 2013;2:e23952.

    PubMed  PubMed Central  Google Scholar 

  91. Li S, Miao T, Sebastian M, Bhullar P, Ghaffari E, Liu M, et al. The transcription factors Egr2 and Egr3 are essential for the control of inflammation and antigen-induced proliferation of B and T cells. Immunity. 2012;37:685–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vandiedonck C, Giraud M, Garchon HJ. Genetics of autoimmune myasthenia gravis: the multifaceted contribution of the HLA complex. J Autoimmun. 2005;25(Suppl):6–11.

    Article  CAS  PubMed  Google Scholar 

  93. Giraud M, Vandiedonck C, Garchon HJ. Genetic factors in autoimmune myasthenia gravis. Ann N Y Acad Sci. 2008;1132:180–92.

    Article  CAS  PubMed  Google Scholar 

  94. Gregersen PK, Kosoy R, Lee AT, Lamb J, Sussman J, McKee D, et al. Risk for myasthenia gravis maps to a (151) Pro→Ala change in TNIP1 and to human leukocyte antigen-B*08. Ann Neurol. 2012;72:927–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Seldin MF, Alkhairy OK, Lee AT, Lamb JA, Sussman J, Pirskanen-Matell R, et al. Genome-wide Association study of late-onset myasthenia gravis: confirmation of TNFRSF11A, and identification of ZBTB10 and Three Distinct HLA Associations. Mol Med. 2015;21:769–81.

    Google Scholar 

  96. Meriggioli MN, Sanders DB. Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. Lancet Neurol. 2009;8:475–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Avidan N, Le Panse R, Berrih-Aknin S, Miller A. Genetic basis of myasthenia gravis – a comprehensive review. J Autoimmun. 2014;52:146–53.

    Article  CAS  PubMed  Google Scholar 

  98. Giraud M, Beaurain G, Eymard B, Tranchant C, Gajdos P, Garchon HJ. Genetic control of autoantibody expression in autoimmune myasthenia gravis: role of the self-antigen and of HLA-linked loci. Genes Immun. 2004;5:398–404.

    Article  CAS  PubMed  Google Scholar 

  99. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136:642–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen JQ, Papp G, Szodoray P, Zeher M. The role of microRNAs in the pathogenesis of autoimmune diseases. Autoimmun Rev. 2016;15:1171–80.

    Article  CAS  PubMed  Google Scholar 

  101. Punga T, Le Panse R, Andersson M, Truffault F, Berrih-Aknin S, Punga AR. Circulating miRNAs in myasthenia gravis: miR-150-5p as a new potential biomarker. Ann Clin Transl Neurol. 2014;1:49–58.

    Article  CAS  PubMed  Google Scholar 

  102. Punga T, Bartoccioni E, Lewandowska M, Damato V, Evoli A, Punga AR. Disease specific enrichment of circulating let-7 family microRNA in MuSK+ myasthenia gravis. J Neuroimmunol. 2016;292:21–6.

    Article  CAS  PubMed  Google Scholar 

  103. Punga AR, Andersson M, Alimohammadi M, Punga T. Disease specific signature of circulating miR-150-5p and miR-21-5p in myasthenia gravis patients. J Neurol Sci. 2015;356:90–6.

    Article  CAS  PubMed  Google Scholar 

  104. Nogales-Gadea G, Ramos-Fransi A, Suarez-Calvet X, Navas M, Rojas-Garcia R, Mosquera JL, et al. Analysis of serum miRNA profiles of myasthenia gravis patients. PLoS One. 2014;9:e91927.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Chunjie N, Huijuan N, Zhao Y, Jianzhao W, Xiaojian Z. Disease-specific signature of serum miR-20b and its targets IL-8 and IL-25, in myasthenia gravis patients. Eur Cytokine Netw. 2015;26:61–6.

    PubMed  Google Scholar 

  106. Xin Y, Cai H, Lu T, Zhang Y, Yang Y, Cui Y. miR-20b Inhibits T cell proliferation and activation via NFAT signaling pathway in thymoma-associated myasthenia gravis. Biomed Res Int. 2016;2016:9595718.

    PubMed  PubMed Central  Google Scholar 

  107. Lu J, Yan M, Wang Y, Zhang J, Yang H, Tian FF, et al. Altered expression of miR-146a in myasthenia gravis. Neurosci Lett. 2013;555:85–90.

    Article  CAS  PubMed  Google Scholar 

  108. Zhang J, Jia G, Liu Q, Hu J, Yan M, Yang B, et al. Silencing miR-146a influences B cells and ameliorates experimental autoimmune myasthenia gravis. Immunology. 2015;144:56–67.

    Article  CAS  PubMed  Google Scholar 

  109. Gilliet M, Cao W, Liu YJ. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol. 2008;8:594–606.

    Article  CAS  PubMed  Google Scholar 

  110. Piccolo G, Franciotta D, Versino M, Alfonsi E, Lombardi M, Poma G. Myasthenia gravis in a patient with chronic active hepatitis C during interferon-alpha treatment. J Neurol Neurosurg Psychiatry. 1996;60:348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mase G, Zorzon M, Biasutti E, Vitrani B, Cazzato G, Urban F, et al. Development of myasthenia gravis during interferon-alpha treatment for anti-HCV positive chronic hepatitis. J Neurol Neurosurg Psychiatry. 1996;60:348–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dionisiotis J, Zoukos Y, Thomaides T. Development of myasthenia gravis in two patients with multiple sclerosis following interferon beta treatment. J Neurol Neurosurg Psychiatry. 2004;75:1079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Batocchi AP, Evoli A, Servidei S, Palmisani MT, Apollo F, Tonali P. Myasthenia gravis during interferon alfa therapy. Neurology. 1995;45:382–3.

    Article  CAS  PubMed  Google Scholar 

  114. Cavalcante P, Cufi P, Mantegazza R, Berrih-Aknin S, Bernasconi P, Le Panse R. Etiology of myasthenia gravis: innate immunity signature in pathological thymus. Autoimmun Rev. 2013;12:863–74.

    Article  CAS  PubMed  Google Scholar 

  115. Cizeron-Clairac G, Le Panse R, Frenkian-Cuvelier M, Meraouna A, Truffault F, Bismuth J, et al. Thymus and myasthenia gravis: what can we learn from DNA microarrays? J Neuroimmunol. 2008;201–202:57–63.

    Article  PubMed  CAS  Google Scholar 

  116. Cufi P, Dragin N, Weiss JM, Martinez-Martinez P, De Baets MH, Roussin R, et al. Implication of double-stranded RNA signaling in the etiology of autoimmune myasthenia gravis. Ann Neurol. 2013;73:281–93.

    Article  CAS  PubMed  Google Scholar 

  117. Leite MI, Jones M, Strobel P, Marx A, Gold R, Niks E, et al. Myasthenia gravis thymus: complement vulnerability of epithelial and myoid cells, complement attack on them, and correlations with autoantibody status. Am J Pathol. 2007;171:893–905.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Cavalcante P, Barberis M, Cannone M, Baggi F, Antozzi C, Maggi L, et al. Detection of poliovirus-infected macrophages in thymus of patients with myasthenia gravis. Neurology. 2010;74:1118–26.

    Article  CAS  PubMed  Google Scholar 

  119. Leis AA, Szatmary G, Ross MA, Stokic DS. West nile virus infection and myasthenia gravis. Muscle Nerve. 2014;49(1):26–9.

    Article  CAS  PubMed  Google Scholar 

  120. Wang YZ, Yan M, Tian FF, Zhang JM, Liu Q, Yang H, et al. Possible involvement of toll-like receptors in the pathogenesis of myasthenia gravis. Inflammation. 2013;36:121–30.

    Article  CAS  PubMed  Google Scholar 

  121. Bernasconi P, Barberis M, Baggi F, Passerini L, Cannone M, Arnoldi E, et al. Increased toll-like receptor 4 expression in thymus of myasthenic patients with thymitis and thymic involution. Am J Pathol. 2005;167:129–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cavalcante P, Galbardi B, Franzi S, Marcuzzo S, Barzago C, Bonanno S, et al. Increased expression of Toll-like receptors 7 and 9 in myasthenia gravis thymus characterized by active Epstein-Barr virus infection. Immunobiology. 2016;221:516–27.

    Article  CAS  PubMed  Google Scholar 

  123. Robinet M, Maillard S, Cron MA, Berrih-Aknin S, Le Panse R. Review on Toll-Like receptor activation in myasthenia gravis: application to the development of new experimental models. Clin Rev Allergy Immunol. 2017;52:133–47.

    Article  CAS  PubMed  Google Scholar 

  124. Meager A, Wadhwa M, Dilger P, Bird C, Thorpe R, Newsom-Davis J, et al. Anti-cytokine autoantibodies in autoimmunity: preponderance of neutralizing autoantibodies against interferon-alpha, interferon-omega and interleukin-12 in patients with thymoma and/or myasthenia gravis. Clin Exp Immunol. 2003;132:128–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cufi P, Soussan P, Truffault F, Fetouchi R, Robinet M, Fadel E, et al. Thymoma-associated myasthenia gravis: On the search for a pathogen signature. J Autoimmun. 2014;52:29–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Berrih-Aknin DSc, DR. INSERM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Le Panse, R., Berrih-Aknin, S. (2018). Immunopathogenesis of Myasthenia Gravis. In: Kaminski, H., Kusner, L. (eds) Myasthenia Gravis and Related Disorders. Current Clinical Neurology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-73585-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73585-6_3

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-73584-9

  • Online ISBN: 978-3-319-73585-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics