Advertisement

Fluorescence Spectroscopy as an Alternative Analytical Tool for Monitoring Biodiesel Oxidative Stability: Thermal Oxidation Effect on the Endogenous Chromophores and Fluorophores in Biodiesel

  • Keurison Figueredo MagalhãesEmail author
  • Anderson Rodrigues Lima Caires
  • Tiago Andrade Chimenez
  • Mariele Cappelari Fripp
  • Fabíola Machado
  • Samuel Leite Oliveira
Chapter
  • 501 Downloads
Part of the Green Energy and Technology book series (GREEN)

Abstract

Thermal stability of biodiesel is an important quality factor and it must be precisely evaluated. Despite the existence of conventional methods, fast, accurate, and robust analytical procedures are needed and still being developed. In this study, soybean and canola biodiesels underwent degradation by heating the samples and a systematic dependence on the concentration of endogenous chromophores (conjugated dienes, trienes, and tetraenes) and fluorophores (conjugated tetraenes) was optically monitored. UV–Vis absorption and fluorescence spectra of biodiesel allowed to identify the molecules formed in the initial thermal degradation stage. Absorbance and fluorescence intensities systematically changed at thermal treatment over 100 °C. Therefore, monitoring of the degradation compounds allows to evaluate the biodiesel degradation and the evolution of the degradation compounds content. The results indicate that analytical methods based on UV–Vis absorption and fluorescence spectroscopy may be able to monitor the biodiesel degradation, providing basis for the development of simple, portable, and low-cost devices.

Keywords

Biodiesel UV–Vis absorption Fluorescence Thermal degradation 

Notes

Acknowledgements

The authors are grateful for financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT). This work was performed under the auspices of the National Institute of Science and Technology of Photonics/CNPq. One of the authors (A.R.L.C.) also appreciates the support provided by National Institute of Science and Technology of Optics and Photonics/CNPq.

References

  1. Arudi RL, Sutherland MW, Bielski BHJ (1983) Purification of oleic acid and linoleic acid. J Lipid Res 24:485–488Google Scholar
  2. Atadashi IM, Aroua MK, Abdul Aziz AR, Sulaiman NMN (2012) The effects of water on biodiesel production and refining technologies: a review. Renew Sustain Energy Rev 16:3456–3470CrossRefGoogle Scholar
  3. Caires ARL, Lima VS, Oliveira SL (2012) Quantification of biodiesel content in diesel/biodiesel blends by fluorescence spectroscopy: evaluation of the dependence on biodiesel feedstock. Renew Energy 46:137–140.  https://doi.org/10.1016/j.renene.2012.03.026 CrossRefGoogle Scholar
  4. Caires ARL, Scherer MD, De Souza JE et al (2014) The role of viscosity in the fluorescence behavior of the diesel/biodiesel blends. Renew Energy 63:388–391.  https://doi.org/10.1016/j.renene.2013.09.041 CrossRefGoogle Scholar
  5. Chacón JN, Gaggini P, Sinclair RS, Smith FJ (2000) Photo- and thermal-oxidation studies on methyl and phenyl linoleate: anti-oxidant behaviour and rates of reaction. Chem Phys Lipids 107:107–120.  https://doi.org/10.1016/S0009-3084(00)00157-2 CrossRefGoogle Scholar
  6. Chimenez TA, Magalhães KF, Caires ARL, Oliveira SL (2012) Fluorescence as an analytical tool for assessing the conversion of oil into biodiesel. J Fluoresc 22:1177–1182.  https://doi.org/10.1007/s10895-012-1057-x CrossRefGoogle Scholar
  7. Conceição MM, Fernandes VJ, Araújo AS et al (2007) Thermal and oxidative degradation of castor oil biodiesel. Energy Fuels 21:1522–1527.  https://doi.org/10.1021/ef0602224 CrossRefGoogle Scholar
  8. Dantas MB, Albuquerque AR, Barros AK et al (2011) Evaluation of the oxidative stability of corn biodiesel. Fuel 90:773–778.  https://doi.org/10.1016/j.fuel.2010.09.014 CrossRefGoogle Scholar
  9. de Lira LFB, de Albuquerque MS, Pacheco JGA et al (2010) Infrared spectroscopy and multivariate calibration to monitor stability quality parameters of biodiesel. Microchem J 96:126–131.  https://doi.org/10.1016/j.microc.2010.02.014 CrossRefGoogle Scholar
  10. Divya O, Mishra AK (2008) Understanding the concept of concentration-dependent red-shift in synchronous fluorescence spectra: prediction of lambda (SFS)(max) and optimization of deltalambda for synchronous fluorescence scan. Anal Chim Acta 630:47–56.  https://doi.org/10.1016/j.aca.2008.09.056 CrossRefGoogle Scholar
  11. Dos Santos VML, Da Silva JAB, Stragevitch L, Longo RL (2011) Thermochemistry of biodiesel oxidation reactions: a DFT study. Fuel 90:811–817.  https://doi.org/10.1016/j.fuel.2010.09.017 CrossRefGoogle Scholar
  12. Dunn RO (2005) Effect of antioxidants on the oxidative stability of methyl soyate (biodiesel). Fuel Process Technol 86:1071–1085.  https://doi.org/10.1016/j.fuproc.2004.11.003 CrossRefGoogle Scholar
  13. Dunn RO (2008) Effect of temperature on the oil stability index (OSI) of biodiesel. Energy Fuels 22:657–662.  https://doi.org/10.1021/ef700412c CrossRefGoogle Scholar
  14. Dunn RO (2012) Thermal oxidation of biodiesel by pressurized differential scanning calorimetry: effects of heating ramp rate. Energy Fuels 26:6015–6024.  https://doi.org/10.1021/ef3010543 CrossRefGoogle Scholar
  15. Dupuy N, Le Dréau Y, Ollivier D et al (2005) Origin of French virgin olive oil registered designation of origins predicted by chemometric analysis of synchronous excitation-emission fluorescence spectra. J Agric Food Chem 53:9361–9368.  https://doi.org/10.1021/jf051716m CrossRefGoogle Scholar
  16. Escuderos ME, Sayago A, Morales MT, Aparicio R (2009) Evaluation of alpha-tocopherol in virgin olive oil by a luminiscent method. Grasas Aceites 60:336–342.  https://doi.org/10.3989/gya.108308 CrossRefGoogle Scholar
  17. Ferrari RA, De Souza WL (2009) Avaliação da estabilidade oxidativa de biodiesel de óleo de girassol com antioxidantes. Quim Nova 32:106–111.  https://doi.org/10.1590/S0100-40422009000100020 CrossRefGoogle Scholar
  18. Fygle KE, Melo TB (1996) Optical absorption studies of the kinetics of UV- and self-initiated autoxidation of linoleate micelles. Chem Phys Lipids 79:39–46.  https://doi.org/10.1016/0009-3084(95)02505-7 CrossRefGoogle Scholar
  19. Gil DB, De La Peña AM, Arancibia JA et al (2006) Second-order advantage achieved by unfolded-partial least-squares/residual bilinearization modeling of excitation-emission fluorescence data presenting inner filter effects. Anal Chem 78:8051–8058.  https://doi.org/10.1021/ac061369v CrossRefGoogle Scholar
  20. Herbinet O, Pitz WJ, Westbrook CK (2008) Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate. Combust Flame 154:507–528.  https://doi.org/10.1016/j.combustflame.2008.03.003 CrossRefGoogle Scholar
  21. Hurtubise RJ (1976) Selective fluorescence quenching and determination of phenolic antioxidants. Anal Chem 48:2092–2094CrossRefGoogle Scholar
  22. Jain S, Sharma MP (2012) Correlation development between the oxidation and thermal stability of biodiesel. Fuel 102:354–358.  https://doi.org/10.1016/j.fuel.2012.06.110 CrossRefGoogle Scholar
  23. Jin F, Zhong H, Cao J et al (2010) Oxidation of unsaturated carboxylic acids under hydrothermal conditions. Bioresour Technol 101:7624–7634.  https://doi.org/10.1016/j.biortech.2010.04.056 CrossRefGoogle Scholar
  24. Karavalakis G, Stournas S, Karonis D (2010) Evaluation of the oxidation stability of diesel/biodiesel blends. Fuel 89:2483–2489.  https://doi.org/10.1016/j.fuel.2010.03.041 CrossRefGoogle Scholar
  25. Khoury RR, Ebrahimi D, Hejazi L et al (2011) Degradation of fatty acid methyl esters in biodiesels exposed to sunlight and seawater. Fuel 90:2677–2683.  https://doi.org/10.1016/j.fuel.2011.03.041 CrossRefGoogle Scholar
  26. Kivevele TT, Mbarawa MM, Bereczky Á, Zöldy M (2011) Evaluation of the oxidation stability of biodiesel produced from moringa oleifera oil. Energy Fuels 25:5416–5421.  https://doi.org/10.1021/ef200855b CrossRefGoogle Scholar
  27. Knothe G (2007) Some aspects of biodiesel oxidative stability. Fuel Process Technol 88:669–677CrossRefGoogle Scholar
  28. Knothe G, Krahl J, Van Gerpen J (2010) The biodiesel handbook, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  29. Lakowicz JR (2006) Principles of fluorescence spectroscopyGoogle Scholar
  30. Lapuerta M, Rodríguez-Fernández J, Ramos A, Álvarez B (2012) Effect of the test temperature and anti-oxidant addition on the oxidation stability of commercial biodiesel fuels. Fuel 93:391–396.  https://doi.org/10.1016/j.fuel.2011.09.011 CrossRefGoogle Scholar
  31. Leung DYC, Koo BCP, Guo Y (2006) Degradation of biodiesel under different storage conditions. Bioresour Technol 97:250–256.  https://doi.org/10.1016/j.biortech.2005.02.006 CrossRefGoogle Scholar
  32. Magalhães KF, Caires ARL, Silva MS et al (2014) Endogenous fluorescence of biodiesel and products thereof: investigation of the molecules responsible for this effect. Fuel 119:120–128.  https://doi.org/10.1016/j.fuel.2013.11.024 CrossRefGoogle Scholar
  33. McCormick RL, Ratcliff M, Moens L, Lawrence R (2007) Several factors affecting the stability of biodiesel in standard accelerated tests. Fuel Process Technol 88:651–657.  https://doi.org/10.1016/j.fuproc.2007.01.006 CrossRefGoogle Scholar
  34. Meira M, Quintella CM, Tanajura ADS et al (2011) Determination of the oxidation stability of biodiesel and oils by spectrofluorimetry and multivariate calibration. Talanta 85:430–434.  https://doi.org/10.1016/j.talanta.2011.04.002 CrossRefGoogle Scholar
  35. Mendonça A, Rocha AC, Duarte AC, Santos EBH (2013) The inner filter effects and their correction in fluorescence spectra of salt marsh humic matter. Anal Chim Acta 788:99–107.  https://doi.org/10.1016/j.aca.2013.05.051 CrossRefGoogle Scholar
  36. Navarra G, Cannas M, D’Amico M et al (2011) Thermal oxidative process in extra-virgin olive oils studied by FTIR, rheology and time-resolved luminescence. Food Chem 126:1226–1231.  https://doi.org/10.1016/j.foodchem.2010.12.010 CrossRefGoogle Scholar
  37. Poulli KI, Chantzos NV, Mousdis GA, Georgiou CA (2009) Synchronous fluorescence spectroscopy: tool for monitoring thermally stressed edible oils. J Agric Food Chem 57:8194–8201.  https://doi.org/10.1021/jf902758d CrossRefGoogle Scholar
  38. Ramalho EFSM, Santos IMG, Maia AS et al (2011) Thermal characterization of the poultry fat biodiesel. J Therm Anal Calorim 106:825–829.  https://doi.org/10.1007/s10973-011-1886-x CrossRefGoogle Scholar
  39. Rekdal K, Mel TB (1995) UV-initiated autoxidation of methyl linoleate in micelles studied by optical absorption. Chem Phys Lipids 75:127–136.  https://doi.org/10.1016/0009-3084(94)02413-Y CrossRefGoogle Scholar
  40. Sarin A, Arora R, Singh NP et al (2009) Influence of metal contaminants on oxidation stability of Jatropha biodiesel. Energy 34:1271–1275.  https://doi.org/10.1016/j.energy.2009.05.018 CrossRefGoogle Scholar
  41. Scherer MD, Oliveira SL, Lima SM et al (2011) Determination of the biodiesel content in diesel/biodiesel blends: a method based on fluorescence spectroscopy. J Fluoresc 21:1027–1031CrossRefGoogle Scholar
  42. Sikorska E, Gliszczyńska-Świgło A, Khmelinskii I, Sikorski M (2005a) Synchronous fluorescence spectroscopy of edible vegetable oils. Quantification of tocopherols. J Agric Food Chem 53:6988–6994.  https://doi.org/10.1021/jf0507285 CrossRefGoogle Scholar
  43. Sikorska E, Górecki T, Khmelinskii IV et al (2005b) Classification of edible oils using synchronous scanning fluorescence spectroscopy. Food Chem 89:217–225.  https://doi.org/10.1016/j.foodchem.2004.02.028 CrossRefGoogle Scholar
  44. Sikorska E, Romaniuk A, Khmelinskii IV et al (2004) Characterization of edible oils using total luminescence spectroscopy. J Fluoresc 14:25–35CrossRefGoogle Scholar
  45. Singer P, Rühe J (2014) On the mechanism of deposit formation during thermal oxidation of mineral diesel and diesel/biodiesel blends under accelerated conditions. Fuel 133:245–252.  https://doi.org/10.1016/j.fuel.2014.04.041 CrossRefGoogle Scholar
  46. Sirkoska E, Romaniuk A, Khmelinskii IV et al (2004) Characterization of edible oils using total luminescence spectroscopy. J Fluoresc 14:25–35.  https://doi.org/10.1023/B:JOFL.0000014656.75245.62 CrossRefGoogle Scholar
  47. Sklar LA, Hudson BS, Petersen M, Diamond J (1977a) Conjugated polyene fatty acids on fluorescent probes: spectroscopic characterization. Biochemistry 16:813–819.  https://doi.org/10.1021/bi00624a001 CrossRefGoogle Scholar
  48. Sklar LA, Hudson BS, Simoni RD (1977b) Conjugated polyene fatty acids as fluorescent probes: binding to bovine serum albumin. Biochemistry 16:5100–5108.  https://doi.org/10.1021/bi00642a024 CrossRefGoogle Scholar
  49. Smyk B, Amarowicz R, Szabelski M et al (2009) Steady-state and time-resolved fluorescence studies of stripped Borage oil. Anal Chim Acta 646:85–89.  https://doi.org/10.1016/j.aca.2009.05.007 CrossRefGoogle Scholar
  50. Smyk B, Wieczorek P, Zadernowski R (2011) A method of concentration estimation of trienes, tetraenes, and pentaenes in evening primrose oil. Eur J Lipid Sci Technol 113:592–596.  https://doi.org/10.1002/ejlt.201000418 CrossRefGoogle Scholar
  51. Van Gerpen J (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107.  https://doi.org/10.1016/j.fuproc.2004.11.005 CrossRefGoogle Scholar
  52. Xin J, Imahara H, Saka S (2009) Kinetics on the oxidation of biodiesel stabilized with antioxidant. Fuel 88:282–286.  https://doi.org/10.1016/j.fuel.2008.08.018 CrossRefGoogle Scholar
  53. Yaakob Z, Narayanan BN, Padikkaparambil S et al (2014) A review on the oxidation stability of biodiesel. Renew Sustain Energy Rev 35:136–153.  https://doi.org/10.1016/j.rser.2014.03.055 CrossRefGoogle Scholar
  54. Zandomeneghi M, Carbonaro L, Caffarata C (2005) Fluorescence of vegetable oils: olive oils. J Agric Food Chem 53:759–766.  https://doi.org/10.1021/jf048742p CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Keurison Figueredo Magalhães
    • 1
    Email author
  • Anderson Rodrigues Lima Caires
    • 1
  • Tiago Andrade Chimenez
    • 2
  • Mariele Cappelari Fripp
    • 3
  • Fabíola Machado
    • 3
  • Samuel Leite Oliveira
    • 1
  1. 1.Grupo de Óptica e Fotônica, Instituto de FísicaUniversidade Federal de Mato Grosso do SulCampo GrandeBrazil
  2. 2.Instituto Federal CatarinenseSão Bento do SulBrazil
  3. 3.Grupo de Óptica Aplicada, Faculdade de Ciências Exatas e TecnologiaUniversidade Federal da Grande DouradosDouradosBrazil

Personalised recommendations