Skip to main content

Alternative Multifunctional Additives for Biodiesel Stabilization: Perspectives for More Efficiency and More Cost-Effectiveness

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In this chapter, we address the current technologies to cover the alternative blends composed by multifunctional antioxidants—sometimes called secondary antioxidants—used to overcome the problems of degradation and provide more stability to the biodiesel which is derived from different raw materials. To this end, some valuable works with notable studies of conventional antioxidants, and sometimes synergetic binary/ternary blends and their applications, were briefly reviewed. However, the chapter attempts to cover only an overview of the recent advances in the field of multifunctional alternative additives, which provide a more efficient stabilization of the biodiesel. Also, its activities allow lowering the concentration of additives into biodiesel while maintaining their required specification. Furthermore, the chapter brings some aspects of the chemistry behind the multifunctional activities, focusing on the key benefits that afford in their multifunctional properties. Lastly, considering the vast scale in which the biofuel can be processed, we also show that the target additives improve the performance of conventional antioxidants more cost-effectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbaszaadeh A, Ghobadian B, Omidkhah MR, Najafi G (2012) Current biodiesel production technologies: a comparative review. Energy Convers Manag 63:138–148

    Article  Google Scholar 

  • Adegoke GO, Vijay Kumar M, Gopala Krishna AG et al (1998) Antioxidants and lipid oxidation in foods: a critical appraisal. J Food Sci Technol 35:283–298

    Google Scholar 

  • Agarwal AK, Khurana D (2013) Long-term storage oxidation stability of Karanja biodiesel with the use of antioxidants. Fuel Process Technol 106:447–452

    Article  Google Scholar 

  • Banga S, Varshney PK (2010) Effect of impurities on performance of biodiesel: a review

    Google Scholar 

  • Barclay LRC, Vinqvist MR (2003) Phenols as Antioxidants. In: The chemistry of phenols, John Wiley & Sons, Ltd, pp 839–908

    Google Scholar 

  • Canakci M, Sanli H (2008) Biodiesel production from various feedstocks and their effects on the fuel properties. J Ind Microbiol Biotechnol 35:431–441

    Article  Google Scholar 

  • Chahine MH, Macneill RF (1974) Effect of stabilization of crude whale oil with tertiary butylhydroquinone and other antioxidants upon keeping quality of resultant deodorized oil. A feasibility study. J Am Oil Chem Soc 51:37–41

    Article  Google Scholar 

  • Choe E, Min DB (2009) Mechanisms of antioxidants in the oxidation of foods. Compr Rev Food Sci Food Saf 8:345–358

    Article  Google Scholar 

  • Comin M, de Souza ACD, Roveda AC et al (2017) Alternatives binary and ternary blends and its effects on stability of soybean biodiesel contaminated with metals. Fuel 191:275–282. https://doi.org/10.1016/j.fuel.2016.11.080

    Article  Google Scholar 

  • Cosgrove JP, Church DF, Pryor WA (1987) The kinetics of the autoxidation of polyunsaturated fatty acids. Lipids 22:299–304

    Article  Google Scholar 

  • da Silva WLG, Salomão AA, Vila MMDC, Tubino M (2017) Influence of water and ultraviolet irradiation on the induction period of the oxidation of biodiesel. J Braz Chem Soc 28:676–680

    Google Scholar 

  • Damasceno SS, Santos NA, Santos IMG et al (2013) Caffeic and ferulic acids: an investigation of the effect of antioxidants on the stability of soybean biodiesel during storage. Fuel 107:641–646. https://doi.org/10.1016/j.fuel.2012.11.045

    Article  Google Scholar 

  • De Sousa LS, De Moura CVR, De Oliveira JE, De Moura EM (2014) Use of natural antioxidants in soybean biodiesel. Fuel 134:420–428. https://doi.org/10.1016/j.fuel.2014.06.007

    Article  Google Scholar 

  • de Souza ACD, Comin M, de Oliveira LH et al (2017) Application of solvent dye in the field of biodiesel preservation. Color Technol 133:165–169. https://doi.org/10.1111/cote.12263

    Article  Google Scholar 

  • Decker EA, Elias RJ, McClements DJ (2010) Oxidation in foods and beverages and antioxidant applications: management in different industry sectors, Elsevier

    Google Scholar 

  • Deyab MA (2016) Corrosion inhibition of aluminum in biodiesel by ethanol extracts of Rosemary leaves. J Taiwan Inst Chem Eng 58:536–541

    Article  Google Scholar 

  • Diana da Silva Araújo F, Araújo IC, Costa ICG, et al (2014) Study of degumming process and evaluation of oxidative stability of methyl and ethyl biodiesel of Jatropha curcas L. oil from three different Brazilian states. Renew Energy. https://doi.org/10.1016/j.renene.2014.06.001

  • Dwivedi G, Sharma MP (2015) Effect of metal on stability and cold flow property of pongamia biodiesel. Mater Today Proc 2:1421–1426

    Article  Google Scholar 

  • Embuscado ME (2015) Herbs and spices as antioxidants for food preservation. Handb Antioxid Food Preserv 251–283

    Google Scholar 

  • Fattah IMR, Masjuki HH, Kalam MA et al (2014) Effect of antioxidants on oxidation stability of biodiesel derived from vegetable and animal based feedstocks. Renew Sustain Energy Rev 30:356–370

    Article  Google Scholar 

  • Fiege H, Voges H, Hamamoto T et al (2000) Phenol derivatives

    Google Scholar 

  • Grajzer M, Prescha A, Korzonek K et al (2015) Characteristics of rose hip (Rosa canina L.) cold-pressed oil and its oxidative stability studied by the differential scanning calorimetry method. Food Chem 188:459–466

    Article  Google Scholar 

  • Haas MJ, McAloon AJ, Yee WC, Foglia TA (2006) A process model to estimate biodiesel production costs. Bioresour Technol 97:671–678. https://doi.org/10.1016/j.biortech.2005.03.039

    Article  Google Scholar 

  • Håkansson B, Jägerstad M (1990) The effect of thermal inactivation of lipoxygenase on the stability of vitamin E in wheat. J Cereal Sci 12:177–185. https://doi.org/10.1016/S0733-5210(09)80099-4

    Article  Google Scholar 

  • Hraš AR, Hadolin M, Knez Ž, Bauman D (2000) Comparison of antioxidative and synergistic effects of rosemary extract with α-tocopherol, ascorbyl palmitate and citric acid in sunflower oil. Food Chem 71:229–233

    Article  Google Scholar 

  • Jain S, Sharma MP (2012) Application of thermogravimetric analysis for thermal stability of Jatropha curcas biodiesel. Fuel 93:252–257

    Article  Google Scholar 

  • Jakeria MR, Fazal MA, Haseeb A (2014) Influence of different factors on the stability of biodiesel: a review. Renew Sustain Energy Rev 30:154–163

    Article  Google Scholar 

  • Kivevele T, Huan Z (2015) Influence of metal contaminants and antioxidant additives on storage stability of biodiesel produced from non-edible oils of Eastern Africa origin (Croton megalocarpus and Moringa oleifera oils). Fuel 158:530–537

    Article  Google Scholar 

  • Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070

    Article  Google Scholar 

  • Knothe G (2007) Some aspects of biodiesel oxidative stability. Fuel Process Technol 88:669–677

    Article  Google Scholar 

  • Knothe G, Razon LF (2017) Biodiesel fuels. Prog Energy Combust Sci 58:36–59. https://doi.org/10.1016/j.pecs.2016.08.001

    Article  Google Scholar 

  • Kreivaitis R, Gumbyte M, Kazancev K et al (2013) A comparison of pure and natural antioxidant modified rapeseed oil storage properties. Ind Crops Prod 43:511–516. https://doi.org/10.1016/j.indcrop.2012.07.071

    Article  Google Scholar 

  • Lamba BY, Joshi G, Tiwari AK et al (2013) Effect of antioxidants on physico-chemical properties of EURO-III HSD (high speed diesel) and Jatropha biodiesel blends. Energy 60:222–229

    Article  Google Scholar 

  • Lapuerta M, Rodríguez-Fernández J, Ramos Á, Álvarez B (2012) Effect of the test temperature and anti-oxidant addition on the oxidation stability of commercial biodiesel fuels. Fuel 93:391–396

    Article  Google Scholar 

  • Lima RP, da Luz PTS, Braga M et al (2017) Murumuru (Astrocaryum murumuru Mart.) butter and oils of buriti (Mauritia flexuosa Mart.) and pracaxi (Pentaclethra macroloba (Willd.) Kuntze) can be used for biodiesel production: Physico-chemical properties and thermal and kinetic studies. Ind Crops Prod 97:536–544

    Article  Google Scholar 

  • Liu G (2015) Development of low-temperature properties on biodiesel fuel: a review. Int J Energy Res 39:1295–1310

    Article  Google Scholar 

  • Mahmudul HM, Hagos FY, Mamat R et al (2017) Production, characterization and performance of biodiesel as an alternative fuel in diesel engines–A review. Renew Sustain Energy Rev 72:497–509

    Article  Google Scholar 

  • Maia ECR, Borsato D, Moreira I et al (2011) Study of the biodiesel B100 oxidative stability in mixture with antioxidants. Fuel Process Technol 92:1750–1755

    Article  Google Scholar 

  • Marinova E, Toneva A, Yanishlieva N (2008) Synergistic antioxidant effect of α-tocopherol and myricetin on the autoxidation of triacylglycerols of sunflower oil. Food Chem 106:628–633

    Article  Google Scholar 

  • Medeiros ML, Cordeiro AMMT, Queiroz N et al (2014) Efficient antioxidant formulations for use in biodiesel. Energy Fuels 28:1074–1080

    Article  Google Scholar 

  • Min DB, Smouse TH (1985) Flavor chemistry of fats and oils. The American oil chemists society

    Google Scholar 

  • Mittelbach M, Schober S (2003) The influence of antioxidants on the oxidation stability of biodiesel. J Am Oil Chem Soc 80:817–823

    Article  Google Scholar 

  • Moser BR (2008) Efficacy of myricetin as an antioxidant in methyl esters of soybean oil. Eur J Lipid Sci Technol 110:1167–1174. https://doi.org/10.1002/ejlt.200800145

    Article  Google Scholar 

  • Moser BR (2012) Efficacy of gossypol as an antioxidant additive in biodiesel. Renew Energy 40:65–70. https://doi.org/10.1016/j.renene.2011.09.022

    Article  Google Scholar 

  • Niki E, Saito T, Kawakami A, Kamiya Y (1984) Inhibition of oxidation of methyl linoleate in solution by vitamin E and vitamin C. J Biol Chem 259:4177–4182

    Google Scholar 

  • Nivetha S, Roy DV (2013) Effect of natural and synthetic antioxidants on oxidative stability of FAMEs obtained from hevea brasiliensis. J Energy Chem 22:935–941. https://doi.org/10.1016/S2095-4956(14)60275-8

    Article  Google Scholar 

  • Omura K (1995) Antioxidant synergism between butylated hydroxyanisole and butylated hydroxytoluene. J Am Oil Chem Soc 72:1565–1570

    Article  Google Scholar 

  • Orives JR, Galvan D, Pereira JL et al (2014) Experimental design applied for cost and efficiency of antioxidants in biodiesel. J Am Oil Chem Soc 91:1805–1811

    Article  Google Scholar 

  • Othman MF, Adam A, Najafi G, Mamat R (2017) Green fuel as alternative fuel for diesel engine: a review. Renew Sustain Energy Rev 80:694–709

    Article  Google Scholar 

  • Pantoja SS, da Conceição LRV, da Costa CEF et al (2013) Oxidative stability of biodiesels produced from vegetable oils having different degrees of unsaturation. Energy Convers Manag 74:293–298

    Article  Google Scholar 

  • Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 97:55–74

    Article  Google Scholar 

  • Pokorny J, Yanishlieva N, Gordon MH (2001) Antioxidants in food: practical applications. CRC press

    Google Scholar 

  • Pullen J, Saeed K (2012) An overview of biodiesel oxidation stability. Renew Sustain Energy Rev 16:5924–5950

    Article  Google Scholar 

  • Pullen J, Saeed K (2014) Experimental study of the factors affecting the oxidation stability of biodiesel FAME fuels. Fuel Process Technol 125:223–235

    Article  Google Scholar 

  • Rasimoglu N, Temur H (2014) Cold flow properties of biodiesel obtained from corn oil. Energy 68:57–60

    Article  Google Scholar 

  • Rawat DS, Joshi G, Lamba BY et al (2015) The effect of binary antioxidant proportions on antioxidant synergy and oxidation stability of Jatropha and Karanja biodiesels. Energy 84:643–655

    Article  Google Scholar 

  • Richard-Forget F, Gauillard F, Hugues M et al (1995) Inhibition of horse bean and germinated barley lipoxygenases by some phenolic compounds. J Food Sci 60:1325–1329

    Article  Google Scholar 

  • Romanini DC, Trindade MAG, Zanoni MVB (2009) A simple electroanalytical method for the analysis of the dye solvent orange 7 in fuel ethanol. Fuel. https://doi.org/10.1016/j.fuel.2008.07.022

    Google Scholar 

  • Roveda AC, Comin M, Caires ARL et al (2016) Thermal stability enhancement of biodiesel induced by a synergistic effect between conventional antioxidants and an alternative additive. Energy 109:260–265. https://doi.org/10.1016/j.energy.2016.04.111

    Article  Google Scholar 

  • Roveda AC, Tenório KV, Caires ARL et al (2017) Alternative binary blends and their synergistic effect on stability of soybean biodiesel. Clean Technol Environ Policy. https://doi.org/10.1007/s10098-017-1445-7

    Google Scholar 

  • Rudnick LR (2013) Synthetics, mineral oils, and bio-based lubricants: chemistry and technology. CRC press

    Google Scholar 

  • Sarin A, Arora R, Singh NP et al (2009) Influence of metal contaminants on oxidation stability of Jatropha biodiesel. Energy 34:1271–1275

    Article  Google Scholar 

  • Sarin A, Arora R, Singh NP et al (2010a) Effect of metal contaminants and antioxidants on the oxidation stability of the methyl ester of Pongamia. J Am Oil Chem Soc 87:567–572

    Article  Google Scholar 

  • Sarin A, Arora R, Singh NP et al (2010b) Synergistic effect of metal deactivator and antioxidant on oxidation stability of metal contaminated Jatropha biodiesel. Energy 35:2333–2337

    Article  Google Scholar 

  • Serqueira DS, Dornellas RM, Silva LG et al (2015) Tetrahydrocurcuminoids as potential antioxidants for biodiesels. Fuel 160:490–494. https://doi.org/10.1016/j.fuel.2015.07.104

    Article  Google Scholar 

  • Serrano M, Bouaid A, Martínez M, Aracil J (2013) Oxidation stability of biodiesel from different feedstocks: influence of commercial additives and purification step. Fuel 113:50–58. https://doi.org/10.1016/j.fuel.2013.05.078

    Article  Google Scholar 

  • Smyk B (2015) Singlet oxygen autoxidation of vegetable oils: Evidences for lack of synergy between β-carotene and tocopherols. Food Chem 182:209–216

    Article  Google Scholar 

  • Spacino KR, da Silva ET, Angilelli KG et al (2016) Relative protection factor optimisation of natural antioxidants in biodiesel B100. Ind Crops Prod 80:109–114. https://doi.org/10.1016/j.indcrop.2015.11.034

    Article  Google Scholar 

  • Sulistyo H, Almeida MF, Dias JM (2015) Influence of synthetic antioxidants on the oxidation stability of biodiesel produced from acid raw Jatropha curcas oil. Fuel Process Technol 132:133–138

    Article  Google Scholar 

  • Trindade MAG, Zanoni MVB (2009) Voltammetric sensing of the fuel dye marker Solvent Blue 14 by screen-printed electrodes. Sensors Actuators B Chem 138:257–263. https://doi.org/10.1016/j.snb.2009.01.043

    Article  Google Scholar 

  • Trindade MAG, Ferreira VS, Zanoni MVB (2007) A square-wave voltammetric method for analysing the colour marker quinizarine in petrol and diesel fuels. Dye Pigment. https://doi.org/10.1016/j.dyepig.2006.03.020

    Google Scholar 

  • Trindade MAG, Zanoni MVB, Matysik F-M (2010) Sensitive determination of water insoluble dyes used as marking of commercial petroleum products using high-performance liquid chromatography with electrochemical detection. Electroanalysis. https://doi.org/10.1002/elan.200900500

    Google Scholar 

  • Trindade MAG, Stradiotto NR, Zanoni MVB (2011) Corantes marcadores de combustíveis: legislação e métodos analíticos para detecção. Química Nov 34:1683–1691

    Article  Google Scholar 

  • Trindade MAG, Romanini DC, Zanoni MVB (2012) Determination of Sudan II dye in ethanol fuel by chromatographic and electroanalytical methods

    Google Scholar 

  • Trindade MAG, Bilibio U, Zanoni MVB (2014) Enhancement of voltammetric determination of quinizarine based on the adsorption at surfactant-adsorbed-layer in disposable electrodes. Fuel 136:201–207. https://doi.org/10.1016/j.fuel.2014.07.044

    Article  Google Scholar 

  • Varatharajan K, Pushparani DS (2017) Screening of antioxidant additives for biodiesel fuels. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2017.07.020

    Google Scholar 

  • Yehye WA, Rahman NA, Ariffin A et al (2015) Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): a review. Eur J Med Chem 101:295–312

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magno Aparecido Gonçalves Trindade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roveda, A.C., Trindade, M.A.G. (2018). Alternative Multifunctional Additives for Biodiesel Stabilization: Perspectives for More Efficiency and More Cost-Effectiveness. In: Trindade, M. (eds) Increased Biodiesel Efficiency. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-73552-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73552-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73551-1

  • Online ISBN: 978-3-319-73552-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics