Employment of Alternative Raw Materials for Biodiesel Synthesis

  • Bruna Silveira Pacheco
  • Caroline Carapina da Silva
  • Samantha Coelho de Freitas
  • Lucas Moraes Berneira
  • Vinícius Lenz da Silva
  • Kathleen Winkel
  • Letícia Braatz Ferreira
  • Claudio Martin Pereira de PereiraEmail author
Part of the Green Energy and Technology book series (GREEN)


The search for renewable fuels has increased in recent times, since petroleum-derived fuels are depleting supplies and contributing to accumulation of carbon dioxide in the environment. In this way, biodiesel presents economic, social, and environmental advantages as a renewable biofuel. This chapter aims to inform the reader about different raw materials that can be used to synthesize biodiesel. Moreover, the main physicochemical parameters are presented based on the standard agencies around the world. In general, the raw materials (algae, castor oil, soybean, waste frying oil, and Chrysomya albiceps larvae) represented satisfactory sources to produce biodiesel.


Biodiesel Raw materials Vegetable oil Biodiesel synthesis Renewable fuels 


  1. Alleman TL, Fouts L, Chupka G (2013) Quality parameters and chemical analysis for biodiesel produced in the United States in 2011. National Renewable Energy Laboratory (NREL), ColoradoGoogle Scholar
  2. Armendáriz J, Lapuerta M, Zavala F, García-Zambrano E, del Carmen Ojeda M (2015) Evaluation of eleven genotypes of castor oil plant (Ricinus communis L.) for the production of biodiesel. Ind Crops Prod 77:484–490CrossRefGoogle Scholar
  3. Azad AK, Rasul MG, Khan MMK, Sharma SC, Mofijur M, Bhuiya MMK (2016) Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: a nonedible oil sources in Australia. Renew Sust Energ Rev 61:302–318CrossRefGoogle Scholar
  4. Bateni H, Karimi K, Zamani A, Benakashani F (2014) Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective. Appl Energy 136:14–22CrossRefGoogle Scholar
  5. Bazooyar B, Ghorbani A, Shariati A (2011) Combustion performance and emissions of petrodiesel and biodiesels based on various vegetable oils in a semi industrial boiler. Fuel 90:3078–3092CrossRefGoogle Scholar
  6. Boey PL, Ganesan S, Maniam GP, Khairuddean M (2012) Catalysts derived from waste sources in the production of biodiesel using waste cooking oil. Catal Today 190:117–121CrossRefGoogle Scholar
  7. Bondioli P, Bella LD (2005) An alternative spectrophotometric method for the determination of free glycerol in biodiesel. Eur J Lipid Sci Technol 107:153–157CrossRefGoogle Scholar
  8. Boog JAF, Silveira ELC, Caland LB, Tubino M (2011) Determining the residual alcohol in biodiesel through its flash point. Fuel 90:905–907CrossRefGoogle Scholar
  9. Canakci M, Van Gerpen J (2001) Biodiesel production from oils and fats with high free fatty acids. Trans ASAE 44:1429–1436CrossRefGoogle Scholar
  10. Canakci M, Van Gerpen J (2003) Comparison of engine performance and emissions for petroleum diesel fuel, yellow grease biodiesel, and soybean oil biodiesel. Trans ASAE 46:937–944Google Scholar
  11. Chand P, Reddy CV, Verkade JG, Wang T, Grewell D (2009) Thermogravimetric quantification of biodiesel produced via alkali catalyzed transesterification of soybean oil. Energy Fuels 23:989–992CrossRefGoogle Scholar
  12. Costa NPR, Rossi L, Zagonel G, Ramos L (2000) Produção de biocombustível alternativo ao óleo diesel através da transesterificação de óleo de soja usado em frituras. Quim Nova 23:531–537CrossRefGoogle Scholar
  13. Crizel MG, Lenz V, Ritter M, Pacheco B, Pereira CMP (2016) Viscosity analysis: a potential protocol to detect adulteration in biodiesel. Austin Environ Sci 1:1010Google Scholar
  14. Dias JM, Araújo JM, Costa JF, Alvim-Ferraz MCM, Almeida MF (2013) Biodiesel production from raw castor oil. Energy 53:58–66CrossRefGoogle Scholar
  15. Ehsan M, Chowdhury MTH (2015) Production of biodiesel using alkaline based catalysts from waste cooking oil: a case study. Procedia Eng 105:638–645CrossRefGoogle Scholar
  16. Endo Y, Endo MT, Kimura K (2005) Rapid determination of iodine value and saponification value of fish oils by near-infrared spectroscopy. J Food Sci 70:C127–C131CrossRefGoogle Scholar
  17. Felizardo P, Correia MJN, Raposo I, Mendes JF, Berkmeier R, Bordado JM (2006) Production of biodiesel from waste frying oils. Waste Manag 26:487–494CrossRefGoogle Scholar
  18. Guldhe A, Singh B, Rawat I, Permaul K, Bux F (2015) Biocatalytic conversion of lipids from microalgae Scenedesmus obliquus to biodiesel using Pseudomonas fluorescens lipase. Fuel 147:117–124CrossRefGoogle Scholar
  19. Hartman L, Lago RCA (1973) Rapid preparation of fatty acids methyl esters. Lab Pract 22:475–476Google Scholar
  20. Harwood JL, Guschina IA (2009) The versatility of algae and their lipid metabolism. Biochimie 91:679–684CrossRefGoogle Scholar
  21. Hobuss CB, Rosales PF, Venzke D, Souza PO, Gobbi PC, Gouvea LP, Santos MAS, Pinto E, Lopes EJ, Pereira CMP (2011) Cultivation of algae in photobioreator and obtention of biodiesel. Braz J Pharmacogn 21:361–364CrossRefGoogle Scholar
  22. Ilkiliç C (2010) An analysis of exhaust emissions on a diesel engine operation by biodiesel. Energ Sources 33:298–330CrossRefGoogle Scholar
  23. Knothe G (2007) Some aspects of biodiesel oxidative stability. Fuel Process Technol 88:669–677CrossRefGoogle Scholar
  24. Knothe G, Razon LF (2017) Biodiesel fuels. Prog Energy Combust Sci 58:36–59CrossRefGoogle Scholar
  25. Knothe G, Steidley KR (2005) Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel 84:1059–1065CrossRefGoogle Scholar
  26. Li Q, Zheng L, Cai H, Garza E, Yu Z, Zhou S (2011) From organic waste to biodiesel: black soldier fly, Hermetia illucens, makes it feasible. Fuel 90:1545–1548CrossRefGoogle Scholar
  27. Li Z, Yang D, Huang M, Hu X, Shen J, Zhao Z, Chen J (2012) Chrysomya megacephala (Fabricius) larvae: a new biodiesel resource. Appl Energy 94:349–354CrossRefGoogle Scholar
  28. Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG (2005) Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res 44:5353–5363CrossRefGoogle Scholar
  29. Mandal S, Mallick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol 84:281–291CrossRefGoogle Scholar
  30. Naik M, Meher LC, Naik SN, Das LM (2008) Production of biodiesel from high free fatty acid Karanja (Pongamia pinnata) oil. Biomass Bioenerg 32:354–357CrossRefGoogle Scholar
  31. Nautiyal P, Subramanian KA, Dastidar MG (2014) Production and characterization of biodiesel from algae. Fuel Process Technol 120:79–88CrossRefGoogle Scholar
  32. Oliveira DM, Ongaratto DP, Fontoura LAM, Naciuk FF, Santos VOB, Kunz JD, Marques MV, Souza AO, Pereira CMP, Samios D (2013) Obtenção de biodiesel por transesterificação em dois estágios e sua caracterização por cromatografia gasosa: óleos e gorduras em laboratório de química orgânica. Quim Nova 36:734–737CrossRefGoogle Scholar
  33. Predojevic ZJ (2008) The production of biodiesel from waste frying oils: a comparison of different purification steps. Fuel 87:3522–3528CrossRefGoogle Scholar
  34. Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268CrossRefGoogle Scholar
  35. Rashid U, Anwar F (2008) Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel 87:265–273CrossRefGoogle Scholar
  36. Rockembach CT, Pereira CMP, Dias D (2015) Evaluation of chalcones in the biodiesel oxidative process. Lambert Academic Publishing, SaarbrückenGoogle Scholar
  37. Sajjadi B, Raman AAA, Arandiyan H (2016) A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: composition, specifications and prediction models. Renew Sustainable Energy Rev 63:62–92CrossRefGoogle Scholar
  38. Sánchez N, Sánchez R, Encinar JM, González JF, Martínez G (2015) Complete analysis of castor oil methanolysis to obtain biodiesel. Fuel 147:95–99CrossRefGoogle Scholar
  39. Sandha GK, Swami VK (2009) Jojoba oil as an organic, shelf stable standard oil-phase base for cosmetic industry. Rasayan J Chem 2:300–306Google Scholar
  40. Vassilev SV, Vassileva CG (2016) Composition, properties and challenges of algae biomass for biofuel application: an overview. Fuel 181:1–33CrossRefGoogle Scholar
  41. Viêgas CV, Hachemi I, Freitas SP, Mäki-Arvela P, Aho A, Hemming J, Smeds A, Heinmaa I, Fontes FB, da Silva Pereira DC, Kumar N (2015) A route to produce renewable diesel from algae: synthesis and characterization of biodiesel via in situ transesterification of Chlorella alga and its catalytic deoxygenation to renewable diesel. Fuel 155:144–154CrossRefGoogle Scholar
  42. Vieira BM, Elicker C, Nunes CFP, Bairros AV, Becker EM, Oliveira DM, Piva E, Fontoura LAM, Pereira CMP (2016) The synthesis and characterization of Butia capitata seed oil as a FAME feedstock. Fuel 184:533–535CrossRefGoogle Scholar
  43. Wang H, Tang H, Wilson J, Salley SO, Simon KY (2008) Total acid number determination of biodiesel and biodiesel blends. J Am Oil Chem Soc 85:1083–1086CrossRefGoogle Scholar
  44. Wu H, Miao X (2014) Biodiesel quality and biochemical changes of microalgae Chlorella pyrenoidosa and Scenedesmus obliquus in response to nitrate levels. Bioresour Technol 170:421–427CrossRefGoogle Scholar
  45. Xie WQ, Gong YX, Yu KX (2017) A rapid method for the quantitative analysis of total acid number in biodiesel based on headspace GC technique. Fuel 210:236–240CrossRefGoogle Scholar
  46. Yaakob Z, Mohammad M, Alherbawi M, Alam Z, Sopian K (2013) Overview of the production of biodiesel from waste cooking oil. Renew Sust Energ Rev 18:184–193Google Scholar
  47. Zhang Y, Dube MA, McLean DD, Kates M (2003) Biodiesel production from waste cooking oil via two-step catalyzed process. Energ Convers Manage 48:184–188Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Bruna Silveira Pacheco
    • 1
  • Caroline Carapina da Silva
    • 2
  • Samantha Coelho de Freitas
    • 3
  • Lucas Moraes Berneira
    • 3
  • Vinícius Lenz da Silva
    • 3
  • Kathleen Winkel
    • 3
  • Letícia Braatz Ferreira
    • 3
  • Claudio Martin Pereira de Pereira
    • 3
    Email author
  1. 1.Post Graduate Program in Biotechnology, Laboratory of Lipidomics and BioorganicCenter of Chemical, Pharmaceutical and Food Sciences, Federal University of PelotasPelotasBrazil
  2. 2.Post Graduate Program in Biochemistry and Bioprospection, Laboratory of Lipidomics and BioorganicCenter of Chemical, Pharmaceutical and Food Sciences, Federal University of PelotasPelotasBrazil
  3. 3.Laboratory of Lipidomics and BioorganicCenter of Chemical, Pharmaceutical and Food Sciences, Federal University of PelotasPelotasBrazil

Personalised recommendations