Skip to main content

Classifier Performance and Evaluation

  • Chapter
  • First Online:
  • 9894 Accesses

Abstract

Among all machine learning problems, classification is the most well studied, and has the most number of solution methodologies. This embarrassment of riches also leads to the natural problems of model selection and evaluation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Instead of computing the expected values of the bias-variance trade-off over different choices of training data sets, one can compute it over different randomized choices of models. This approach is referred to as the model-centric view of the bias-variance trade-off [9]. The traditional view of the bias-variance trade-off is a data-centric view in which the randomized process to describe the bias-variance trade-off is defined by using different choices of training data sets. From the data-centric view, a random forest is really a bias reduction method over training data sets of small size.

  2. 2.

    Throughout this book, we have used y j ∈ {−1, +1} in the classification setting. However, we switch to the notation {0, 1} here for greater conformity with the information retrieval literature.

Bibliography

  1. C. Aggarwal. Recommender systems: The textbook. Springer, 2016.

    Google Scholar 

  2. C. Aggarwal. Outlier analysis. Springer, 2017.

    Book  Google Scholar 

  3. C. Aggarwal and S. Sathe. Outlier ensembles: An introduction. Springer, 2017.

    Google Scholar 

  4. L. Breiman. Random forests. Journal Machine Learning archive, 45(1), pp. 5–32, 2001.

    Article  Google Scholar 

  5. L. Breiman. Bagging predictors. Machine Learning, 24(2), pp. 123–140, 1996.

    MathSciNet  MATH  Google Scholar 

  6. P. Bühlmann and B. Yu. Analyzing bagging. Annals of Statistics, pp. 927–961, 2002.

    Article  MathSciNet  Google Scholar 

  7. T. Fawcett. ROC Graphs: Notes and Practical Considerations for Researchers. Technical Report HPL-2003-4, Palo Alto, CA, HP Laboratories, 2003.

    Google Scholar 

  8. Y. Freund, and R. Schapire. A decision-theoretic generalization of online learning and application to boosting. Computational Learning Theory, pp. 23–37, 1995.

    Google Scholar 

  9. J. Friedman. Stochastic gradient boosting. Computational Statistics and Data Analysis, 38(4), pp. 367–378, 2002.

    Article  MathSciNet  Google Scholar 

  10. J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The Annals of Statistics, 28(2), pp. 337–407, 2000.

    Article  MathSciNet  Google Scholar 

  11. T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning. Springer, 2009.

    Google Scholar 

  12. T. Hastie and R. Tibshirani. Generalized additive models. CRC Press, 1990.

    Google Scholar 

  13. T. K. Ho. Random decision forests. Third International Conference on Document Analysis and Recognition, 1995. Extended version appears as “The random subspace method for constructing decision forests” in IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), pp. 832–844, 1998.

    Google Scholar 

  14. T. K. Ho. Nearest neighbors in random subspaces. Lecture Notes in Computer Science, Vol. 1451, pp. 640–648, Proceedings of the Joint IAPR Workshops SSPR’98 and SPR’98, 1998. http://link.springer.com/chapter/10.1007/BFb0033288

  15. R. Kohavi and D. Wolpert. Bias plus variance decomposition for zero-one loss functions. ICML Conference, 1996.

    Google Scholar 

  16. E. Kong and T. Dietterich. Error-correcting output coding corrects bias and variance. ICML Conference, pp. 313–321, 1995.

    Chapter  Google Scholar 

  17. M. Kuhn. Building predictive models in R Using the caret Package. Journal of Statistical Software, 28(5), pp. 1–26, 2008. https://cran.r-project.org/web/packages/caret/index.html

    Article  Google Scholar 

  18. C. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval. Cambridge University Press, Cambridge, 2008.

    Google Scholar 

  19. R. Samworth. Optimal weighted nearest neighbour classifiers. The Annals of Statistics, 40(5), pp. 2733–2763, 2012.

    Article  MathSciNet  Google Scholar 

  20. G. Seni and J. Elder. Ensemble methods in data mining: Improving accuracy through combining predictions. Synthesis Lectures in Data Mining and Knowledge Discovery, Morgan and Claypool, 2010.

    Article  Google Scholar 

  21. J. Xu and H. Li. Adarank: a boosting algorithm for information retrieval. ACM SIGIR Conference, 2007.

    Google Scholar 

  22. Z.-H. Zhou. Ensemble methods: Foundations and algorithms. CRC Press, 2012.

    Google Scholar 

  23. https://archive.ics.uci.edu/ml/datasets.html

  24. http://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html

  25. http://www.cs.waikato.ac.nz/ml/weka/

  26. http://nlp.stanford.edu/links/statnlp.html

  27. https://cran.r-project.org/web/packages/RTextTools/RTextTools.pdf

  28. https://cran.r-project.org/web/packages/rotationForest/index.html

  29. http://trec.nist.gov/data.html

  30. http://research.nii.ac.jp/ntcir/data/data-en.html

  31. http://www.clef-initiative.eu/home

  32. https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups

  33. https://archive.ics.uci.edu/ml/datasets/Reuters-21578+Text+Categorization+ Collection

  34. http://www.daviddlewis.com/resources/testcollections/rcv1/

  35. http://labs.europeana.eu/data

  36. http://www.icwsm.org/2009/data/

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aggarwal, C.C. (2018). Classifier Performance and Evaluation. In: Machine Learning for Text. Springer, Cham. https://doi.org/10.1007/978-3-319-73531-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73531-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73530-6

  • Online ISBN: 978-3-319-73531-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics