Advertisement

Text Segmentation and Event Detection

  • Charu C. Aggarwal
Chapter
  • 6.4k Downloads

Abstract

“To improve is to change; to be perfect is to change often.”—Winston Churchill

Keywords

Texture Segmentation Potential Segmentation Points Topical Segmentation First Story Detection Token Level Classification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. [10]
    C. Aggarwal and K. Subbian. Event detection in social streams. SDM Conference, 2012.CrossRefGoogle Scholar
  2. [13]
    C. Aggarwal and P. Yu. On clustering massive text and categorical data streams. Knowledge and Information Systems, 24(2), pp. 171–196, 2010.CrossRefGoogle Scholar
  3. [18]
    J. Allan, J. Carbonell, G. Doddington, J. Yamron, and Y. Yang. Topic detection and tracking pilot study final report. CMU Technical Report, Paper 341, 1998.Google Scholar
  4. [43]
    H. Becker, M. Naaman, and L. Gravano. Beyond Trending Topics: Real-World Event Identification on Twitter. ICWSM Conference, pp. 438–441, 2011.Google Scholar
  5. [44]
    D. Beeferman, A. Berger, and J. Lafferty. Statistical models for text segmentation. Machine Learning, 34(1–3), pp. 177–210, 1999.CrossRefGoogle Scholar
  6. [53]
    D. Blei and P. Moreno. Topic segmentation with an aspect hidden Markov model. ACM SIGIR Conference, pp. 343–348, 2001.Google Scholar
  7. [85]
    N. Chambers, S. Wang, and D. Jurafsky. Classifying temporal relations between events. Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions, pp. 173–176, 2007.Google Scholar
  8. [95]
    F. Choi. Advances in domain independent linear text segmentation. North American Chapter of the Association for Computational Linguistics Conference, pp. 26–33, 2000.Google Scholar
  9. [96]
    F. Choi, P. Wiemer-Hastings, and J. Moore. Latent semantic analysis for text segmentation. EMNLP, 2001.Google Scholar
  10. [152]
    J. Eisenstein and R. Barzilay. Bayesian unsupervised topic segmentation. Conference on Empirical Methods in Natural Language Processing, pp. 334–343, 2008.Google Scholar
  11. [155]
    E. Erosheva, S. Fienberg, and J. Lafferty. Mixed-membership models of scientific publications. Proceedings of the National Academy of Sciences, 101, pp. 5220–5227, 2004.CrossRefGoogle Scholar
  12. [213]
    M. Hearst. TextTiling: Segmenting text into multi-paragraph subtopic passages. Computational Linguistics, 23(1), pp. 33–64, 1997.Google Scholar
  13. [253]
    R. Kannan, H. Woo, C. Aggarwal, and H. Park. Outlier detection for text data. SDM Conference, 2017.CrossRefGoogle Scholar
  14. [270]
    J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. ICML Conference, pp. 282–289, 2001.Google Scholar
  15. [298]
    X. Ling and D. Weld. Temporal information extraction. AAAI, pp. 1385–1390, 2010.Google Scholar
  16. [301]
    D. Litman and R. Passonneau. Combining multiple knowledge sources for discourse segmentation. Association for Computational Linguistics, pp. 108–115, 1995.Google Scholar
  17. [320]
    I. Mani and G. Wilson. Robust temporal processing of news. ACL Conference, pp. 69–76, 2000.Google Scholar
  18. [326]
    A. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models for information extraction and segmentation. ICML Conference, pp. 591–598, 2000.Google Scholar
  19. [331]
    D. McClosky, M. Surdeanu, and C. Manning. Event extraction as dependency parsing. Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, pp. 1626–1635, 2011.Google Scholar
  20. [386]
    J. Ponte and W. Croft. Text segmentation by topic. International Conference on Theory and Practice of Digital Libraries, pp. 113–125, 1997.CrossRefGoogle Scholar
  21. [389]
    J. Pustejovsky et al. The timebank corpus. Corpus Linguistics, pp. 40, 2003.Google Scholar
  22. [390]
    J. Pustejovsky et al. TimeML: Robust specification of event and temporal expressions in text. New Directions in Question Answering, 3. pp. 28–34, 2003.Google Scholar
  23. [408]
    A. Ritter, Mausam, O. Etzioni, and S. Clark. Open domain event extraction from twitter. ACM KDD Conference, pp. 1104–1102, 2012.Google Scholar
  24. [409]
    A. Ritter, S. Clark, Mausam, and O. Etzioni. Named entity recognition in tweets: an experimental study. Conference on Empirical Methods in Natural Language Processing, pp. 1524–1534, 2011.Google Scholar
  25. [420]
    T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes Twitter users: real-time event detection by social sensors. World Wide Web Conference, pp. 851–860, 2010.Google Scholar
  26. [421]
    G. Salton and J. Allan. Selective text utilization and text traversal. Proceedings of ACM Hypertext, 1993.Google Scholar
  27. [422]
    G. Salton, J. Allan, and C. Buckley. Approaches to passage retrieval in full text information systems. ACM SIGIR Conference, pp. 49–58, 1997.Google Scholar
  28. [425]
    G. Salton, A. Singhal, M. Mitra, and C. Buckley. Automatic text structuring and summarization. Information Processing and Management, 33(2), pp. 193–207, 1997.CrossRefGoogle Scholar
  29. [433]
    R. Sauri, R. Knippen, M. Verhagen, and J. Pustejovsky. Evita: a robust event recognizer for QA systems. Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 700–707, 2005.Google Scholar
  30. [434]
    H. Sayyadi, M. Hurst, and A. Maykov. Event detection and tracking in social streams. ICWSM Conference, 2009.Google Scholar
  31. [511]
    J. Yamron, I. Carp, L. Gillick, S. Lowe, and P. van Mulbregt. A hidden Markov model approach to text segmentation and event tracking. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 333–336, 1998.Google Scholar
  32. [521]
    Y. Yang, T. Pierce, and J. Carbonell. A study of retrospective and online event detection. ACM SIGIR Conference, pp. 28–36, 1998.Google Scholar
  33. [531]
    J. Zhang, Z. Ghahramani, and Y. Yang. A probabilistic model for online document clustering with application to novelty detection. NIPS Conference, pp. 1617–1624, 2004.Google Scholar
  34. [548]
  35. [554]
  36. [556]
  37. [605]
  38. [613]
  39. [614]

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Charu C. Aggarwal
    • 1
  1. 1.IBM T. J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations