Text Segmentation and Event Detection

  • Charu C. Aggarwal


“To improve is to change; to be perfect is to change often.”—Winston Churchill


  1. [10]
    C. Aggarwal and K. Subbian. Event detection in social streams. SDM Conference, 2012.CrossRefGoogle Scholar
  2. [13]
    C. Aggarwal and P. Yu. On clustering massive text and categorical data streams. Knowledge and Information Systems, 24(2), pp. 171–196, 2010.CrossRefGoogle Scholar
  3. [18]
    J. Allan, J. Carbonell, G. Doddington, J. Yamron, and Y. Yang. Topic detection and tracking pilot study final report. CMU Technical Report, Paper 341, 1998.Google Scholar
  4. [43]
    H. Becker, M. Naaman, and L. Gravano. Beyond Trending Topics: Real-World Event Identification on Twitter. ICWSM Conference, pp. 438–441, 2011.Google Scholar
  5. [44]
    D. Beeferman, A. Berger, and J. Lafferty. Statistical models for text segmentation. Machine Learning, 34(1–3), pp. 177–210, 1999.CrossRefGoogle Scholar
  6. [53]
    D. Blei and P. Moreno. Topic segmentation with an aspect hidden Markov model. ACM SIGIR Conference, pp. 343–348, 2001.Google Scholar
  7. [85]
    N. Chambers, S. Wang, and D. Jurafsky. Classifying temporal relations between events. Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions, pp. 173–176, 2007.Google Scholar
  8. [95]
    F. Choi. Advances in domain independent linear text segmentation. North American Chapter of the Association for Computational Linguistics Conference, pp. 26–33, 2000.Google Scholar
  9. [96]
    F. Choi, P. Wiemer-Hastings, and J. Moore. Latent semantic analysis for text segmentation. EMNLP, 2001.Google Scholar
  10. [152]
    J. Eisenstein and R. Barzilay. Bayesian unsupervised topic segmentation. Conference on Empirical Methods in Natural Language Processing, pp. 334–343, 2008.Google Scholar
  11. [155]
    E. Erosheva, S. Fienberg, and J. Lafferty. Mixed-membership models of scientific publications. Proceedings of the National Academy of Sciences, 101, pp. 5220–5227, 2004.CrossRefGoogle Scholar
  12. [213]
    M. Hearst. TextTiling: Segmenting text into multi-paragraph subtopic passages. Computational Linguistics, 23(1), pp. 33–64, 1997.Google Scholar
  13. [253]
    R. Kannan, H. Woo, C. Aggarwal, and H. Park. Outlier detection for text data. SDM Conference, 2017.CrossRefGoogle Scholar
  14. [270]
    J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. ICML Conference, pp. 282–289, 2001.Google Scholar
  15. [298]
    X. Ling and D. Weld. Temporal information extraction. AAAI, pp. 1385–1390, 2010.Google Scholar
  16. [301]
    D. Litman and R. Passonneau. Combining multiple knowledge sources for discourse segmentation. Association for Computational Linguistics, pp. 108–115, 1995.Google Scholar
  17. [320]
    I. Mani and G. Wilson. Robust temporal processing of news. ACL Conference, pp. 69–76, 2000.Google Scholar
  18. [326]
    A. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models for information extraction and segmentation. ICML Conference, pp. 591–598, 2000.Google Scholar
  19. [331]
    D. McClosky, M. Surdeanu, and C. Manning. Event extraction as dependency parsing. Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, pp. 1626–1635, 2011.Google Scholar
  20. [386]
    J. Ponte and W. Croft. Text segmentation by topic. International Conference on Theory and Practice of Digital Libraries, pp. 113–125, 1997.CrossRefGoogle Scholar
  21. [389]
    J. Pustejovsky et al. The timebank corpus. Corpus Linguistics, pp. 40, 2003.Google Scholar
  22. [390]
    J. Pustejovsky et al. TimeML: Robust specification of event and temporal expressions in text. New Directions in Question Answering, 3. pp. 28–34, 2003.Google Scholar
  23. [408]
    A. Ritter, Mausam, O. Etzioni, and S. Clark. Open domain event extraction from twitter. ACM KDD Conference, pp. 1104–1102, 2012.Google Scholar
  24. [409]
    A. Ritter, S. Clark, Mausam, and O. Etzioni. Named entity recognition in tweets: an experimental study. Conference on Empirical Methods in Natural Language Processing, pp. 1524–1534, 2011.Google Scholar
  25. [420]
    T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes Twitter users: real-time event detection by social sensors. World Wide Web Conference, pp. 851–860, 2010.Google Scholar
  26. [421]
    G. Salton and J. Allan. Selective text utilization and text traversal. Proceedings of ACM Hypertext, 1993.Google Scholar
  27. [422]
    G. Salton, J. Allan, and C. Buckley. Approaches to passage retrieval in full text information systems. ACM SIGIR Conference, pp. 49–58, 1997.Google Scholar
  28. [425]
    G. Salton, A. Singhal, M. Mitra, and C. Buckley. Automatic text structuring and summarization. Information Processing and Management, 33(2), pp. 193–207, 1997.CrossRefGoogle Scholar
  29. [433]
    R. Sauri, R. Knippen, M. Verhagen, and J. Pustejovsky. Evita: a robust event recognizer for QA systems. Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 700–707, 2005.Google Scholar
  30. [434]
    H. Sayyadi, M. Hurst, and A. Maykov. Event detection and tracking in social streams. ICWSM Conference, 2009.Google Scholar
  31. [511]
    J. Yamron, I. Carp, L. Gillick, S. Lowe, and P. van Mulbregt. A hidden Markov model approach to text segmentation and event tracking. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 333–336, 1998.Google Scholar
  32. [521]
    Y. Yang, T. Pierce, and J. Carbonell. A study of retrospective and online event detection. ACM SIGIR Conference, pp. 28–36, 1998.Google Scholar
  33. [531]
    J. Zhang, Z. Ghahramani, and Y. Yang. A probabilistic model for online document clustering with application to novelty detection. NIPS Conference, pp. 1617–1624, 2004.Google Scholar
  34. [548]
  35. [554]
  36. [556]
  37. [605]
  38. [613]
  39. [614]

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Charu C. Aggarwal
    • 1
  1. 1.IBM T. J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations