Text Summarization



“Less is more.”—Ludwig Mies van der Rohe


  1. [18]
    J. Allan, J. Carbonell, G. Doddington, J. Yamron, and Y. Yang. Topic detection and tracking pilot study final report. CMU Technical Report, Paper 341, 1998.Google Scholar
  2. [39]
    R. Barzilay and M. Elhadad. Using lexical chains for text summarization. Advances in Automatic Text Summarization, pp. 111–121, 1999.Google Scholar
  3. [40]
    R. Barzilay, N. Elhadad, and K. McKeown. Inferring strategies for sentence ordering in multidocument news summarization. Journal of Artificial Intelligence Research, 17, pp. 35–55, 2002.zbMATHGoogle Scholar
  4. [41]
    R. Barzilay and K. R. McKeown. Sentence fusion for multidocument news summarization. Computational Linguistics, 31(3), pp. 397–328, 2005.CrossRefGoogle Scholar
  5. [76]
    J. Carbonell and J. Goldstein. The use of MMR, diversity-based reranking for reordering documents and producing summaries. ACM SIGIR Conference, pp. 335–336, 1998.Google Scholar
  6. [78]
    D. Chakrabarti and K. Punera. Event Summarization Using Tweets. ICWSM Conference, 11, pp. 66–73, 2011.Google Scholar
  7. [84]
    Y. Chali and S. Joty. Improving the performance of the random walk model for answering complex questions. Annual Meeting of the Association for Computational Linguistics on Human Language Technologies, pp. 9–12, 2008.Google Scholar
  8. [101]
    J. Clarke and M. Lapata. Models for sentence compression: A comparison across domains, training requirements and evaluation measures. ACL Conference, pp. 377–384, 2006.Google Scholar
  9. [110]
    J. Conroy and D. O’Leary. Text summarization via hidden markov models. ACM SIGIR Conference, pp. 406–407, 2001.Google Scholar
  10. [111]
    J. Conroy, J. Schlessinger, D. O’Leary, and J. Goldstein. Back to basics: CLASSY 2006. Document Understanding Conference, 2006.Google Scholar
  11. [126]
    D. Das and A. Martins. A survey on automatic text summarization. Literature Survey for the Language and Statistics II course at CMU, 4, pp. 1–31, 2007.Google Scholar
  12. [141]
    B. Dorr, D. Zajic, and R. Schwartz. Hedge Trimmer: A parse-and-trim approach to headline generation. HLT-NAACL Workshop on Text Summarization, pp. 1–8, 2003.Google Scholar
  13. [150]
    H. P. Edmundson. New methods in automatic extracting. Journal of the ACM, 16(2), pp. 264–286, 1969.CrossRefGoogle Scholar
  14. [154]
    G. Erkan and D. Radev. LexRank: Graph-based lexical centrality as salience in text summarization. Journal of Artificial Intelligence Research, 22, pp. 457–479, 2004.Google Scholar
  15. [170]
    K. Filippova and M. Strube. Sentence fusion via dependency graph compression. Conference on Empirical Methods in Natural Language Processing, pp. 177–185, 2008.Google Scholar
  16. [176]
    M. Fuentes, E. Alfonseca, and H. Rodriguez. Support Vector Machines for query-focused summarization trained and evaluated on Pyramid data. ACL Conference, pp. 57–60, 2007.Google Scholar
  17. [179]
    M. Galley and K. McKeown. Lexicalized Markov grammars for sentence compression. Human Language Technologies: The Conference of the North American Chapter of the Association for Computational Linguistics, pp. 180–187, 2007.Google Scholar
  18. [188]
    D. Gillick, K. Riedhammer, B. Favre, and D. Hakkani-Tur. A global optimization framework for meeting summarization. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4769–4772, 2009.Google Scholar
  19. [192]
    Y. Gong and X. Liu. Generic text summarization using relevance measure and latent semantic analysis. ACM SIGIR Conference, pp. 19–25, 2001.Google Scholar
  20. [200]
    A. Haghighi and L. Vanderwende. Exploring content models for multi-document summarization. Human Language Technologies, pp. 362–370, 2009.Google Scholar
  21. [201]
    D. Hakkani-Tur and G. Tur. Statistical sentence extraction for information distillation. Conference on Acoustics, Speech and Signal Processing, 4, 2007.Google Scholar
  22. [210]
    V. Hatzivassiloglou, J. Klavans, M. Holcombe, R. Barzilay, M.-Y. Kan, and K. R. McKeown. SIMFINDER: A flexible clustering tool for summarization. NAACL Workshop on Automatic Summarization, pp. 41–49, 2001.Google Scholar
  23. [215]
    M. Hearst. TextTiling: Segmenting text into multi-paragraph subtopic passages. Computational Linguistics, 23(1), pp. 33–64, 1997.Google Scholar
  24. [219]
    G. Hirst and D. St-Onge. Lexical chains as representation of context for the detection and correction of malapropisms. In WordNet: An Electronic Lexical Database and Some of its Applications, MIT Press, 1998.Google Scholar
  25. [228]
    E. Hovy and C.-Y. Lin. Automated Text Summarization in SUMMARIST. in Advances in Automatic Text Summarization, pp. 82–94, 1999.Google Scholar
  26. [238]
    H. Jing. Sentence reduction for automatic text summarization. Conference on Applied Natural Language Processing, pp. 310–315, 2000.Google Scholar
  27. [239]
    H. Jing. Cut-and-paste text summarization. PhD Thesis, Columbia University, 2001.
  28. [263]
    K. Knight and D. Marcu. Summarization beyond sentence extraction: A probabilistic approach to sentence compression. Artificial Intelligence, 139(1), pp. 91–107, 2002.CrossRefGoogle Scholar
  29. [269]
    J. Kupiec, J. Pedersen, and F. Chen. A trainable document summarizer. ACM SIGIR Conference, pp. 68–73, 1995.Google Scholar
  30. [279]
    J. Leskovec, N. Milic-Frayling, and M. Grobelnik. Impact of linguistic analysis on the semantic graph: coverage and learning of document extracts. National Conference on Artificial Intelligence, pp. 1069–1074, 2005.Google Scholar
  31. [295]
    C.-Y. Lin and E. Hovy. The automated acquisition of topic signatures for text summarization. Conference on Computational linguistics, pp. 495–501, 2000.Google Scholar
  32. [296]
    C.-Y. Lin and E. Hovy. From single to multi-document summarization: A prototype system and its evaluation. ACL Conference, pp. 457–464, 2002.Google Scholar
  33. [297]
    H. Lin and J. Bilmes. Multi-document summarization via budgeted maximization of submodular functions. Human Language Technologies, pp. 912–920, 2010.Google Scholar
  34. [312]
    H. P. Luhn. The automatic creation of literature abstracts. IBM Journal of Research and Development, 2(2), pp. 159–165, 1958.MathSciNetCrossRefGoogle Scholar
  35. [323]
    E. Marsi and E. Krahmer. Explorations in sentence fusion. European Workshop on Natural Language Generation, pp. 109–117, 2005.Google Scholar
  36. [339]
    R. Mihalcea and P. Tarau. TextRank: Bringing order into texts. Conference on Empirical Methods in Natural Language Processing, pp. 404–411, 2004.Google Scholar
  37. [347]
    G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. J. Miller. Introduction to WordNet: An on-line lexical database. International Journal of Lexicography (special issue), 3(4), pp. 235–312, 1990. CrossRefGoogle Scholar
  38. [358]
    G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of approximations for maximizing submodular set functions–I. Mathematical Programming, 14(1), pp. 265–294, 1978.MathSciNetCrossRefGoogle Scholar
  39. [359]
    A. Nenkova and K. McKeown. Automatic Summarization Foundations and Trends in Information Retrieval, 5(2–3), pp. 103–233, 2011.Google Scholar
  40. [360]
    A. Nenkova and K. McKeown. A survey of text summarization techniques. Mining Text Data, Springer, pp. 43–76, 2012.CrossRefGoogle Scholar
  41. [367]
    M. Osborne. Using maximum entropy for sentence extraction. ACL Workshop on Automatic Summarization, pp. 1–8, 2002.Google Scholar
  42. [371]
    C. D. Paice. Constructing literature abstracts by computer: techniques and prospects. Information Processing and Management, 26(1), pp. 171–186, 1990.CrossRefGoogle Scholar
  43. [398]
    D. Radev, H. Jing, and M. Budzikowska. Centroid-based summarization of multiple documents: sentence extraction, utility-based evaluation, and user studies. NAACL-ANLP Workshop on Automatic summarization, pp. 21–30, 2000.Google Scholar
  44. [399]
    D. Radev, H. Jing, M. Stys, and D. Tam. Centroid-based summarization of multiple documents. Information Processing and Management, 40(6), pp. 919–938, 2004.CrossRefGoogle Scholar
  45. [401]
    R. Rehurek and P. Sojka. Software framework for topic modelling with large corpora. LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50, 2010.
  46. [419]
    T. Sakai and K. Spärck Jones. Generic summaries for indexing in information retrieval. ACM SIGIR Conference, pp. 190–198, 2001.Google Scholar
  47. [425]
    G. Salton, A. Singhal, M. Mitra, and C. Buckley. Automatic text structuring and summarization. Information Processing and Management, 33(2), pp. 193–207, 1997.CrossRefGoogle Scholar
  48. [449]
    A. Siddharthan, A. Nenkova, and K. Mckeown. Syntactic simplification for improving content selection in multi-document summarization. International Conference on Computational Linguistic, pp. 896–902, 2004.Google Scholar
  49. [454]
    K. Spärck Jones. Automatic summarizing: factors and directions. Advances in Automatic Text Summarization, pp. 1–12, 1998.Google Scholar
  50. [455]
    K. Spärck Jones. Automatic summarising: The state of the art. Information Processing and Management, 43(6), pp. 1449–1481, 2007.CrossRefGoogle Scholar
  51. [457]
    M. Stairmand. A computational analysis of lexical cohesion with applications in information retrieval. Ph.D. Dissertation, Center for Computational Linguistics UMIST, Manchester, 1996.
  52. [458]
    J. Steinberger and K. Jezek. Using latent semantic analysis in text summarization and summary evaluation. ISIM, pp. 93–100, 2004.Google Scholar
  53. [459]
    J. Steinberger, M. Poesio, M. Kabadjov, and K. Jezek. Two uses of anaphora resolution in summarization. Information Processing and Management, 43(6), pp. 1663–1680, 2007.CrossRefGoogle Scholar
  54. [476]
    J. Turner and E. Charniak. Supervised and unsupervised learning for sentence compression. ACL Conference, pp. 290–297, 2005.Google Scholar
  55. [483]
    L. Vanderwende, H. Suzuki, C. Brockett, and A. Nenkova. Beyond SumBasic: Task-focused summarization with sentence simplification and lexical expansion. Information Processing and Management, 43, pp. 1606–1618, 2007CrossRefGoogle Scholar
  56. [489]
    D. Wang, S. Zhu, T. Li, and Y. Gong. Multi-document summarization using sentence-based topic models. ACL-IJCNLP Conference, pp. 297–300, 2009.Google Scholar
  57. [505]
    M. J. Witbrock and V. O. Mittal. Ultra-summarization: A statistical approach to generating highly condensed non-extractive summaries. ACM SIGIR Conference, pp. 315–316, 1999.Google Scholar
  58. [507]
    K. Wong, M. Wu, and W. Li. Extractive summarization using supervised and semi-supervised learning. International Conference on Computational Linguistics, pp. 985–992, 2008.Google Scholar
  59. [523]
    D. Zajic, B. Dorr, J. Lin, and R. Schwartz. Multi-candidate reduction: Sentence compression as a tool for document summarization tasks. Information Processing and Management, 43(6), pp. 1549–1570, 2007.CrossRefGoogle Scholar
  60. [548]
  61. [554]
  62. [556]
  63. [591]
  64. [592]
  65. [593]
  66. [594]
  67. [595]
  68. [596]

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IBM T. J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations