Fluids in Sepsis

  • James R. Anstey
  • Adam M. Deane
  • Rinaldo Bellomo


Despite being considered one of the cornerstones of treatment, many aspects of intravenous fluid administration to patients with sepsis remain controversial. While recent data have provided considerable insights, there remains uncertainty as to the type, rate and volume of fluid that should be administered. In addition, the appropriate balance between fluids and vasopressors to achieve adequate end-organ perfusion at various stages of the septic insult is open to debate. Nonetheless, there is increasing evidence that the volume, nature and timing of fluid given can have a significant influence upon patient outcome. Finally, the conventional paradigms regarding fluid administration and fluid bolus therapy are being increasingly challenged by newer evidence.


Sepsis Filling Fluid responsiveness Albumin Crystalloid Shock 


  1. 1.
    Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10.CrossRefGoogle Scholar
  2. 2.
    Linkermann A, Stockwell BR, Krautwald S, Anders HJ. Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat Rev Immunol. 2014;14(11):759–67.CrossRefGoogle Scholar
  3. 3.
    Chang KC, Unsinger J, Davis CG, Schwulst SJ, Muenzer JT, Strasser A, et al. Multiple triggers of cell death in sepsis: death receptor and mitochondrial-mediated apoptosis. FASEB J. 2007;21(3):708–19.CrossRefGoogle Scholar
  4. 4.
    Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 2014;10(1):9–17.CrossRefGoogle Scholar
  5. 5.
    Acheampong A, Vincent JL. A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit Care. 2015;19:251.CrossRefGoogle Scholar
  6. 6.
    de Oliveira FS, Freitas FG, Ferreira EM, de Castro I, Bafi AT, de Azevedo LC, et al. Positive fluid balance as a prognostic factor for mortality and acute kidney injury in severe sepsis and septic shock. J Crit Care. 2015;30(1):97–101.CrossRefGoogle Scholar
  7. 7.
    Siddall E, Khatri M, Radhakrishnan J. Capillary leak syndrome: etiologies, pathophysiology, and management. Kidney Int. 2017;92(1):37–46.CrossRefGoogle Scholar
  8. 8.
    Kumar A, Haery C, Parrillo JE. Myocardial dysfunction in septic shock. Crit Care Clin. 2000;16(2):251–87.CrossRefGoogle Scholar
  9. 9.
    Zanotti-Cavazzoni SL, Hollenberg SM. Cardiac dysfunction in severe sepsis and septic shock. Curr Opin Crit Care. 2009;15(5):392–7.CrossRefGoogle Scholar
  10. 10.
    Vieillard-Baron A, Caille V, Charron C, Belliard G, Page B, Jardin F. Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med. 2008;36(6):1701–6.CrossRefGoogle Scholar
  11. 11.
    Garcia-Alvarez M, Marik P, Bellomo R. Stress hyperlactataemia: present understanding and controversy. Lancet Diabetes Endocrinol. 2014;2(4):339–47.CrossRefGoogle Scholar
  12. 12.
    Garcia-Alvarez M, Marik P, Bellomo R. Sepsis-associated hyperlactatemia. Crit Care. 2014;18(5):503.CrossRefGoogle Scholar
  13. 13.
    Bakker J, de Backer D, Hernandez G. Lactate-guided resuscitation saves lives: we are not sure. Intensive Care Med. 2016;42(3):472–4.CrossRefGoogle Scholar
  14. 14.
    Monnet X, Delaney A, Barnato A. Lactate-guided resuscitation saves lives: no. Intensive Care Med. 2016;42(3):470–1.CrossRefGoogle Scholar
  15. 15.
    Zafrani L, Payen D, Azoulay E, Ince C. The microcirculation of the septic kidney. Semin Nephrol. 2015;35(1):75–84.CrossRefGoogle Scholar
  16. 16.
    Martensson J, Bellomo R. Sepsis-induced acute kidney injury. Crit Care Clin. 2015;31(4):649–60.CrossRefGoogle Scholar
  17. 17.
    Maiden MJ, Otto S, Brealey JK, Finnis ME, Chapman MJ, Kuchel TR, et al. Structure and function of the kidney in septic shock. A prospective controlled experimental study. Am J Respir Crit Care Med. 2016;194(6):692–700.CrossRefGoogle Scholar
  18. 18.
    Lipcsey M, Bellomo R. Septic acute kidney injury: hemodynamic syndrome, inflammatory disorder, or both? Crit Care. 2011;15(6):1008.CrossRefGoogle Scholar
  19. 19.
    Gomez H, Ince C, De Backer D, Pickkers P, Payen D, Hotchkiss J, et al. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock. 2014;41(1):3–11.CrossRefGoogle Scholar
  20. 20.
    Hjortrup PB, Haase N, Bundgaard H, Thomsen SL, Winding R, Pettila V, et al. Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel-group, multicentre feasibility trial. Intensive Care Med. 2016;42(11):1695–705.CrossRefGoogle Scholar
  21. 21.
    Weil MH, Shubin H, Rosoff L. Fluid repletion in circulatory shock: central venous pressure and other practical guides. JAMA. 1965;192:668–74.CrossRefGoogle Scholar
  22. 22.
    Latta T. Dr Latta’s cases of venous injections in cholera. Lancet. 1832;18(460):370–3.CrossRefGoogle Scholar
  23. 23.
    Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: International Guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43(3):304–77.CrossRefGoogle Scholar
  24. 24.
    Seymour CW, Gesten F, Prescott HC, Friedrich ME, Iwashyna TJ, Phillips GS, et al. Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med. 2017;376(23):2235–44.CrossRefGoogle Scholar
  25. 25.
    Funk DJ, Jacobsohn E, Kumar A. The role of venous return in critical illness and shock-part I: physiology. Crit Care Med. 2013;41(1):255–62.CrossRefGoogle Scholar
  26. 26.
    Carsetti A, Cecconi M, Rhodes A. Fluid bolus therapy: monitoring and predicting fluid responsiveness. Curr Opin Crit Care. 2015;21(5):388–94.CrossRefGoogle Scholar
  27. 27.
    Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–65.CrossRefGoogle Scholar
  28. 28.
    Sadaka F, Juarez M, Naydenov S, O'Brien J. Fluid resuscitation in septic shock: the effect of increasing fluid balance on mortality. J Intensive Care Med. 2014;29(4):213–7.CrossRefGoogle Scholar
  29. 29.
    Marik PE, Linde-Zwirble WT, Bittner EA, Sahatjian J, Hansell D. Fluid administration in severe sepsis and septic shock, patterns and outcomes: an analysis of a large national database. Intensive Care Med. 2017;43(5):625–32.CrossRefGoogle Scholar
  30. 30.
    Cecconi M, Hofer C, Teboul JL, Pettila V, Wilkman E, Molnar Z, et al. Fluid challenges in intensive care: the FENICE study: a global inception cohort study. Intensive Care Med. 2015;41(9):1529–37.CrossRefGoogle Scholar
  31. 31.
    Toscani L, Aya HD, Antonakaki D, Bastoni D, Watson X, Arulkumaran N, et al. What is the impact of the fluid challenge technique on diagnosis of fluid responsiveness? A systematic review and meta-analysis. Crit Care. 2017;21(1):207.CrossRefGoogle Scholar
  32. 32.
    Perner A, Vieillard-Baron A, Bakker J. Fluid resuscitation in ICU patients: quo vadis? Intensive Care Med. 2015;41(9):1667–9.CrossRefGoogle Scholar
  33. 33.
    Maitland K, Babiker A, Kiguli S, Molyneux E, Group FT. The FEAST trial of fluid bolus in African children with severe infection. Lancet. 2012;379(9816):613. author reply −4CrossRefGoogle Scholar
  34. 34.
    Maitland K, George EC, Evans JA, Kiguli S, Olupot-Olupot P, Akech SO, et al. Exploring mechanisms of excess mortality with early fluid resuscitation: insights from the FEAST trial. BMC Med. 2013;11:68.CrossRefGoogle Scholar
  35. 35.
    Myburgh J, Finfer S. Causes of death after fluid bolus resuscitation: new insights from FEAST. BMC Med. 2013;11:67.CrossRefGoogle Scholar
  36. 36.
    Magder S. Fluid status and fluid responsiveness. Curr Opin Crit Care. 2010;16(4):289–96.CrossRefGoogle Scholar
  37. 37.
    Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134(1):172–8.CrossRefGoogle Scholar
  38. 38.
    Mesquida J, Gruartmoner G, Ferrer R. Passive leg raising for assessment of volume responsiveness: a review. Curr Opin Crit Care. 2017;23(3):237–43.CrossRefGoogle Scholar
  39. 39.
    Vignon P, Repesse X, Begot E, Leger J, Jacob C, Bouferrache K, et al. Comparison of echocardiographic indices used to predict fluid responsiveness in ventilated patients. Am J Respir Crit Care Med. 2017;195(8):1022–32.CrossRefGoogle Scholar
  40. 40.
    Charron C, Caille V, Jardin F, Vieillard-Baron A. Echocardiographic measurement of fluid responsiveness. Curr Opin Crit Care. 2006;12(3):249–54.CrossRefGoogle Scholar
  41. 41.
    Richard JC, Bayle F, Bourdin G, Leray V, Debord S, Delannoy B, et al. Preload dependence indices to titrate volume expansion during septic shock: a randomized controlled trial. Crit Care. 2015;19:5.CrossRefGoogle Scholar
  42. 42.
    See KC, Mukhopadhyay A, Lau SC, Tan SM, Lim TK, Phua J. Shock in the first 24 h of intensive care unit stay: observational study of protocol-based fluid management. Shock. 2015;43(5):456–62.CrossRefGoogle Scholar
  43. 43.
    Saugel B, Vincent JL, Wagner JY. Personalized hemodynamic management. Curr Opin Crit Care. 2017;23(4):334–41.CrossRefGoogle Scholar
  44. 44.
    Aya HD, Ster IC, Fletcher N, Grounds RM, Rhodes A, Cecconi M. Pharmacodynamic analysis of a fluid challenge. Crit Care Med. 2016;44(5):880–91.CrossRefGoogle Scholar
  45. 45.
    Nunes TS, Ladeira RT, Bafi AT, de Azevedo LC, Machado FR, Freitas FG. Duration of hemodynamic effects of crystalloids in patients with circulatory shock after initial resuscitation. Ann Intensive Care. 2014;4:25.CrossRefGoogle Scholar
  46. 46.
    Geisen M, Rhodes A, Cecconi M. Less-invasive approaches to perioperative haemodynamic optimization. Curr Opin Crit Care. 2012;18(4):377–84.CrossRefGoogle Scholar
  47. 47.
    Boyd JH, Sirounis D. Assessment of adequacy of volume resuscitation. Curr Opin Crit Care. 2016;22(5):424–7.CrossRefGoogle Scholar
  48. 48.
    Biais M, de Courson H, Lanchon R, Pereira B, Bardonneau G, Griton M, et al. Mini-fluid challenge of 100 ml of crystalloid predicts fluid responsiveness in the operating room. Anesthesiology. 2017;127:450–6.CrossRefGoogle Scholar
  49. 49.
    Guinot PG, Bernard E, Deleporte K, Petiot S, Dupont H, Lorne E. Mini-fluid challenge can predict arterial pressure response to volume expansion in spontaneously breathing patients under spinal anaesthesia. Anaesth Crit Care Pain Med. 2015;34(6):333–7.CrossRefGoogle Scholar
  50. 50.
    Marik PE. Fluid therapy in 2015 and beyond: the mini-fluid challenge and mini-fluid bolus approach. Br J Anaesth. 2015;115(3):347–9.CrossRefGoogle Scholar
  51. 51.
    Pro CI, Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370(18):1683–93.CrossRefGoogle Scholar
  52. 52.
    Investigators A, Group ACT, Peake SL, Delaney A, Bailey M, Bellomo R, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371(16):1496–506.CrossRefGoogle Scholar
  53. 53.
    Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372(14):1301–11.CrossRefGoogle Scholar
  54. 54.
    Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med. 2013;369(25):2462–3.PubMedGoogle Scholar
  55. 55.
    Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–11.CrossRefGoogle Scholar
  56. 56.
    Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A, et al. Hydroxyethyl starch 130/0.42 versus Ringer's acetate in severe sepsis. N Engl J Med. 2012;367(2):124–34.CrossRefGoogle Scholar
  57. 57.
    Hammond NE, Taylor C, Finfer S, Machado FR, An Y, Billot L, et al. Patterns of intravenous fluid resuscitation use in adult intensive care patients between 2007 and 2014: an international cross-sectional study. PLoS One. 2017;12(5):e0176292.CrossRefGoogle Scholar
  58. 58.
    Pisano A, Landoni G, Bellomo R. The risk of infusing gelatin? Die-hard misconceptions and forgotten (or ignored) truths. Minerva Anestesiol. 2016;82(10):1107–14.PubMedGoogle Scholar
  59. 59.
    Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–56.CrossRefGoogle Scholar
  60. 60.
    Delaney AP, Dan A, McCaffrey J, Finfer S. The role of albumin as a resuscitation fluid for patients with sepsis: a systematic review and meta-analysis. Crit Care Med. 2011;39(2):386–91.CrossRefGoogle Scholar
  61. 61.
    Caironi P, Tognoni G, Masson S, Fumagalli R, Pesenti A, Romero M, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370(15):1412–21.CrossRefGoogle Scholar
  62. 62.
    Myburgh J, Investigators SS, Australian, New Zealand Intensive Care Society Clinical Trials G, Australian Red Cross Blood S, George Institute for International H, et al. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med. 2007;357(9):874–84.CrossRefGoogle Scholar
  63. 63.
    Lee WL, Slutsky AS. Sepsis and endothelial permeability. N Engl J Med. 2010;363(7):689–91.CrossRefGoogle Scholar
  64. 64.
    Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–72.CrossRefGoogle Scholar
  65. 65.
    Young P, Bailey M, Beasley R, Henderson S, Mackle D, McArthur C, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA. 2015;314(16):1701–10.CrossRefGoogle Scholar
  66. 66.
    Semler MW, Wanderer JP, Ehrenfeld JM, Stollings JL, Self WH, Siew ED, et al. Balanced crystalloids versus saline in the intensive care unit. The SALT randomized trial. Am J Respir Crit Care Med. 2017;195(10):1362–72.CrossRefGoogle Scholar
  67. 67.
    Zampieri FG, Azevedo LCP, Correa TD, Falavigna M, Machado FR, Assuncao MSC, et al. Study protocol for the balanced solution versus saline in intensive care study (BaSICS): a factorial randomised trial. Crit Care Resusc. 2017;19(2):175–82.PubMedGoogle Scholar
  68. 68.
    Semler MW, Self WH, Wang L, Byrne DW, Wanderer JP, Ehrenfeld JM, et al. Balanced crystalloids versus saline in the intensive care unit: study protocol for a cluster-randomized, multiple-crossover trial. Trials. 2017;18(1):129.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • James R. Anstey
    • 1
  • Adam M. Deane
    • 1
    • 2
  • Rinaldo Bellomo
    • 1
    • 2
  1. 1.Intensive Care UnitRoyal Melbourne HospitalParkvilleAustralia
  2. 2.University of MelbourneParkvilleAustralia

Personalised recommendations