Advertisement

The Endocrine System in Sepsis

  • Nicholas Heming
  • Sivanthiny Sivanandamoorthy
  • Paris Meng
  • Djillali Annane
Chapter

Abstract

  • The endocrine system ensures, through a closely regulated network, that body functions are properly coordinated.

  • The endocrine system is comprised of endocrine glands and their messengers.

  • The chemical mediators synthesized and secreted into the bloodstream are called hormones.

  • The acute stress response consists in producing cortisol, catecholamines, vasopressin, glucagon, and GH aimed at maintaining tissue oxygenation as well as a readily available supply of nutrients.

  • Prolonged critical illness is associated with low T3 syndrome, critical illness-related corticosteroid insufficiency, as well as reduced production of growth hormone and of gonadotropins.

  • Low T3 syndrome is probably an adaptive condition, aimed at reducing energy expenditure.

  • In conditions at risk of critical illness-related corticosteroid insufficiency such as sepsis, treatment with corticosteroids (equivalent of 200 mg hydrocortisone per day for 4 days or more) may be considered.

Keywords

Stress response Cortisol Corticosteroid Septic shock Adrenal Hypothalamus Pituitary Low T3 syndrome 

References

  1. 1.
    Guyton AC, Hall JE. Textbook of medical physiology. Philadelphia: Saunders; 2005.Google Scholar
  2. 2.
    Kirshner N, Goodall M. The formation of adrenaline from noradrenaline. Biochim Biophys Acta. 1957;24:658–9.CrossRefGoogle Scholar
  3. 3.
    Lehninger principles of biochemistry (9781429234146) | Macmillan Learning [Internet]. [Cited 2017 Oct 1]. http://www.macmillanlearning.com/catalog/Product/lehningerprinciplesofbiochemistry-sixthedition-nelson
  4. 4.
    Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A. 1995;92:1013–7.CrossRefGoogle Scholar
  5. 5.
    Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013;9:25–53.CrossRefGoogle Scholar
  6. 6.
    Baumann G. Growth hormone-binding proteins: state of the art. J Endocrinol. 1994;141:1–6.CrossRefGoogle Scholar
  7. 7.
    Tannenbaum GS, Painson JC, Lapointe M, Gurd W, McCarthy GF. Interplay of somatostatin and growth hormone-releasing hormone in genesis of episodic growth hormone secretion. Metabolism. 1990;39:35–9.CrossRefGoogle Scholar
  8. 8.
    Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.CrossRefGoogle Scholar
  9. 9.
    Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev. 1998;19:717–97.PubMedGoogle Scholar
  10. 10.
    Thissen JP, Ketelslegers JM, Underwood LE. Nutritional regulation of the insulin-like growth factors. Endocr Rev. 1994;15:80–101.PubMedGoogle Scholar
  11. 11.
    Channing CP, Schaerf FW, Anderson LD, Tsafriri A. Ovarian follicular and luteal physiology. Int Rev Physiol. 1980;22:117–201.PubMedGoogle Scholar
  12. 12.
    Parker MM, Shelhamer JH, Bacharach SL, Green MV, Natanson C, Frederick TM, et al. Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med. 1984;100:483–90.CrossRefGoogle Scholar
  13. 13.
    Rudiger A, Singer M. Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med. 2007;35:1599–608.CrossRefGoogle Scholar
  14. 14.
    Godin PJ, Fleisher LA, Eidsath A, Vandivier RW, Preas HL, Banks SM, et al. Experimental human endotoxemia increases cardiac regularity: results from a prospective, randomized, crossover trial. Crit Care Med. 1996;24:1117–24.CrossRefGoogle Scholar
  15. 15.
    Korach M, Sharshar T, Jarrin I, Fouillot JP, Raphaël JC, Gajdos P, et al. Cardiac variability in critically ill adults: influence of sepsis. Crit Care Med. 2001;29:1380–5.CrossRefGoogle Scholar
  16. 16.
    Lyte M, Freestone PPE, Neal CP, Olson BA, Haigh RD, Bayston R, et al. Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes. Lancet. 2003;361:130–5.CrossRefGoogle Scholar
  17. 17.
    van der Poll T, Coyle SM, Barbosa K, Braxton CC, Lowry SF. Epinephrine inhibits tumor necrosis factor-alpha and potentiates interleukin 10 production during human endotoxemia. J Clin Invest. 1996;97:713–9.CrossRefGoogle Scholar
  18. 18.
    Suzuki T, Morisaki H, Serita R, Yamamoto M, Kotake Y, Ishizaka A, et al. Infusion of the beta-adrenergic blocker esmolol attenuates myocardial dysfunction in septic rats. Crit Care Med. 2005;33:2294–301.CrossRefGoogle Scholar
  19. 19.
    Aboab J, Sebille V, Jourdain M, Mangalaboyi J, Gharbi M, Mansart A, et al. Effects of esmolol on systemic and pulmonary hemodynamics and on oxygenation in pigs with hypodynamic endotoxin shock. Intensive Care Med. 2011;37:1344–51.CrossRefGoogle Scholar
  20. 20.
    Morelli A, Ertmer C, Westphal M, Rehberg S, Kampmeier T, Ligges S, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA. 2013;310:1683–91.CrossRefGoogle Scholar
  21. 21.
    Annane D, Pastores S, Arlt W, Balk RA, Beishuizen A, Briegel J, et al. Critical illness-related corticosteroid insufficiency (CIRCI): a narrative review from a multispecialty task force of the Society of Critical Care Medicine (SCCM) and the European Society of Intensive Care Medicine (ESICM). Intensive Care Med. 2017;43(12):1781–92.  https://doi.org/10.1007/s00134-017-4914-x.CrossRefPubMedGoogle Scholar
  22. 22.
    Parsadaniantz SM, Batsché E, Gegout-Pottie P, Terlain B, Gillet P, Netter P, et al. Effects of continuous infusion of interleukin 1 beta on corticotropin-releasing hormone (CRH), CRH receptors, proopiomelanocortin gene expression and secretion of corticotropin, beta-endorphin and corticosterone. Neuroendocrinology. 1997;65:53–63.CrossRefGoogle Scholar
  23. 23.
    Parsadaniantz SM, Levin N, Lenoir V, Roberts JL, Kerdelhué B. Human interleukin 1β: Corticotropin releasing factor and ACTH releasing and gene expression in the male rat: in vivo and in vitro studies: human interleukin 1β. J Neurosci Res. 1994;37:675–82.CrossRefGoogle Scholar
  24. 24.
    Cortes-Puch I, Hicks CW, Sun J, Solomon SB, Eichacker PQ, Sweeney DA, et al. Hypothalamic-pituitary-adrenal axis in lethal canine Staphylococcus aureus pneumonia. AJP Endocrinol Metab. 2014;307:E994–1008.CrossRefGoogle Scholar
  25. 25.
    Polito A, Sonneville R, Guidoux C, Barrett L, Viltart O, Mattot V, et al. Changes in CRH and ACTH synthesis during experimental and human septic shock. PLoS One. 2011;6:e25905.CrossRefGoogle Scholar
  26. 26.
    Annane D, Maxime V, Ibrahim F, Alvarez JC, Abe E, Boudou P. Diagnosis of adrenal insufficiency in severe sepsis and septic shock. Am J Respir Crit Care Med. 2006;174:1319–26.CrossRefGoogle Scholar
  27. 27.
    Annane D, Pastores S, Rochwerg B, Arlt W, Balk RA, Beishuizen A, et al. Guidelines for the diagnosis and management of Critical Illness-Related Corticosteroid Insufficiency (CIRCI) in critically ill patients (Part I): Society of Critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017. Crit Care Med. 2017;45(12):2078–88.  https://doi.org/10.1097/CCM.0000000000002737.CrossRefPubMedGoogle Scholar
  28. 28.
    Waterhouse R. A case of suprarenal apoplexy. Lancet. 1911;177:577–8.CrossRefGoogle Scholar
  29. 29.
    Friderichsen C. Nebennierenapoplexie bei kleinen Kindern. Jahrb Kinderh. 1918;87:109–25.Google Scholar
  30. 30.
    Wang N, Weng W, Breslow JL, Tall AR. Scavenger receptor BI (SR-BI) is up-regulated in adrenal gland in apolipoprotein A-I and hepatic lipase knock-out mice as a response to depletion of cholesterol stores. In vivo evidence that SR-BI is a functional high density lipoprotein receptor under feedback control. J Biol Chem. 1996;271:21001–4.CrossRefGoogle Scholar
  31. 31.
    Polito A, Lorin de la Grandmaison G, Mansart A, Louiset E, Lefebvre H, Sharshar T, et al. Human and experimental septic shock are characterized by depletion of lipid droplets in the adrenals. Intensive Care Med. 2010;36:1852–8.CrossRefGoogle Scholar
  32. 32.
    Gilibert S, Galle-Treger L, Moreau M, Saint-Charles F, Costa S, Ballaire R, et al. Adrenocortical scavenger receptor class B type I deficiency exacerbates endotoxic shock and precipitates sepsis-induced mortality in mice. J Immunol. 2014;193:817–26.CrossRefGoogle Scholar
  33. 33.
    Bruder EA, Ball IM, Ridi S, Pickett W, Hohl C. Single induction dose of etomidate versus other induction agents for endotracheal intubation in critically ill patients. In: The Cochrane Collaboration, editor. Cochrane Database Syst. Rev. [Internet]. Chichester: John Wiley & Sons, Ltd; 2015. [Cited 2017 Aug 1]. http://doi.wiley.com/10.1002/14651858.CD010225.pub2.Google Scholar
  34. 34.
    Beishuizen A, Thijs LG, Vermes I. Patterns of corticosteroid-binding globulin and the free cortisol index during septic shock and multitrauma. Intensive Care Med. 2001;27:1584–91.CrossRefGoogle Scholar
  35. 35.
    Boonen E, Vervenne H, Meersseman P, Andrew R, Mortier L, Declercq PE, et al. Reduced cortisol metabolism during critical illness. N Engl J Med. 2013;368:1477–88.CrossRefGoogle Scholar
  36. 36.
    Pemberton PA, Stein PE, Pepys MB, Potter JM, Carrell RW. Hormone binding globulins undergo serpin conformational change in inflammation. Nature. 1988;336:257–8.CrossRefGoogle Scholar
  37. 37.
    Hammond GL, Smith CL, Paterson NAM, Sibbald WJ. A role for corticosteroid-binding globulin in delivery of cortisol to activated neutrophils*. J Clin Endocrinol Metab. 1990;71:34–9.CrossRefGoogle Scholar
  38. 38.
    Rook G, Baker R, Walker B, Honour J, Jessop D, Hernandez-Pando R, et al. Local regulation of glucocorticoid activity in sites of inflammation: insights from the study of tuberculosis. Ann N Y Acad Sci. 2006;917:913–22.CrossRefGoogle Scholar
  39. 39.
    Stith RD, McCallum RE. Down regulation of hepatic glucocorticoid receptors after endotoxin treatment. Infect Immun. 1983;40:613–21.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Kamiyama K, Matsuda N, Yamamoto S, Takano K -i, Takano Y, Yamazaki H, et al. Modulation of glucocorticoid receptor expression, inflammation, and cell apoptosis in septic guinea pig lungs using methylprednisolone. AJP Lung Cell Mol Physiol. 2008;295:L998–1006.CrossRefGoogle Scholar
  41. 41.
    Kleiman A, Hubner S, Rodriguez Parkitna JM, Neumann A, Hofer S, Weigand MA, et al. Glucocorticoid receptor dimerization is required for survival in septic shock via suppression of interleukin-1 in macrophages. FASEB J. 2012;26:722–9.CrossRefGoogle Scholar
  42. 42.
    Annane B, Sebille L, Mathieu R, et al. Impaired pressor sensitivity to noradrenaline in septic shock patients with and without impaired adrenal function reserve: Pressor response to noradrenaline and adrenal function. Br J Clin Pharmacol. 2002;46:589–97.CrossRefGoogle Scholar
  43. 43.
    Liu J, Haigh RM, Jones CT. Enhancement of noradrenaline-induced inositol polyphosphate formation by glucocorticoids in rat vascular smooth muscle cells. J Endocrinol. 1992;133:405–11.CrossRefGoogle Scholar
  44. 44.
    d’Emmanuele di Villa Bianca R, Lippolis L, Autore G, Popolo A, Marzocco S, Sorrentino L, et al. Dexamethasone improves vascular hyporeactivity induced by LPS in vivo by modulating ATP-sensitive potassium channels activity. Br J Pharmacol. 2003;140:91–6.CrossRefGoogle Scholar
  45. 45.
    Büchele GL, Silva E, Ospina-Tascón GA, Vincent J-L, De Backer D. Effects of hydrocortisone on microcirculatory alterations in patients with septic shock. Crit Care Med. 2009;37:1341–7.CrossRefGoogle Scholar
  46. 46.
    Annane D, Bellissant E, Bollaert PE, Briegel J, Keh D, Kupfer Y. Corticosteroids for treating sepsis. Cochrane Database Syst Rev. 2015;12:CD002243.Google Scholar
  47. 47.
    Johannes T, Mik EG, Klingel K, Dieterich H-J, Unertl KE, Ince C. Low-dose dexamethasone-supplemented fluid resuscitation reverses endotoxin-induced acute renal failure and prevents cortical microvascular hypoxia. Shock. 2009;31:521–8.CrossRefGoogle Scholar
  48. 48.
    Förster C, Burek M, Romero IA, Weksler B, Couraud P-O, Drenckhahn D. Differential effects of hydrocortisone and TNFα on tight junction proteins in an in vitro model of the human blood-brain barrier: hydrocortisone and BBB properties in brain endothelial cell line. J Physiol. 2008;586:1937–49.CrossRefGoogle Scholar
  49. 49.
    Annane D. Corticosteroids for severe sepsis: an evidence-based guide for physicians. Ann Intensive Care. 2011;1:7.CrossRefGoogle Scholar
  50. 50.
    Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43:304–77.CrossRefGoogle Scholar
  51. 51.
    Sharshar T, Blanchard A, Paillard M, Raphael JC, Gajdos P, Annane D. Circulating vasopressin levels in septic shock. Crit Care Med. 2003;31:1752–8.CrossRefGoogle Scholar
  52. 52.
    Russell JA, Walley KR, Singer J, Gordon AC, Hébert PC, Cooper DJ, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358:877–87.CrossRefGoogle Scholar
  53. 53.
    Gordon AC, Mason AJ, Thirunavukkarasu N, Perkins GD, Cecconi M, Cepkova M, et al. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: the VANISH randomized clinical trial. JAMA. 2016;316:509–18.CrossRefGoogle Scholar
  54. 54.
    Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358:125–39.CrossRefGoogle Scholar
  55. 55.
    COIITSS Study Investigators, Annane D, Cariou A, et al. Corticosteroid treatment and intensive insulin therapy for septic shock in adults: a randomized controlled trial. JAMA. 2010;303:341–8.CrossRefGoogle Scholar
  56. 56.
    Plikat K, Langgartner J, Buettner R, Bollheimer LC, Woenckhaus U, Schölmerich J, et al. Frequency and outcome of patients with nonthyroidal illness syndrome in a medical intensive care unit. Metabolism. 2007;56:239–44.CrossRefGoogle Scholar
  57. 57.
    Brent GA, Hershman JM. Thyroxine therapy in patients with severe nonthyroidal illnesses and low serum thyroxine concentration. J Clin Endocrinol Metab. 1986;63:1–8.CrossRefGoogle Scholar
  58. 58.
    Acker CG, Singh AR, Flick RP, Bernardini J, Greenberg A, Johnson JP. A trial of thyroxine in acute renal failure. Kidney Int. 2000;57:293–8.CrossRefGoogle Scholar
  59. 59.
    Klemperer JD, Klein I, Gomez M, Helm RE, Ojamaa K, Thomas SJ, et al. Thyroid hormone treatment after coronary-artery bypass surgery. N Engl J Med. 1995;333:1522–7.CrossRefGoogle Scholar
  60. 60.
    Takala J, Ruokonen E, Webster NR, Nielsen MS, Zandstra DF, Vundelinckx G, et al. Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med. 1999;341:785–92.CrossRefGoogle Scholar
  61. 61.
    Sharshar T, Bastuji-Garin S, De Jonghe B, Stevens RD, Polito A, Maxime V, et al. Hormonal status and ICU-acquired paresis in critically ill patients. Intensive Care Med. 2010;36:1318–26.CrossRefGoogle Scholar
  62. 62.
    Schols AM, Soeters PB, Mostert R, Pluymers RJ, Wouters EF. Physiologic effects of nutritional support and anabolic steroids in patients with chronic obstructive pulmonary disease. A placebo-controlled randomized trial. Am J Respir Crit Care Med. 1995;152:1268–74.CrossRefGoogle Scholar
  63. 63.
    Strawford A, Barbieri T, Van Loan M, Parks E, Catlin D, Barton N, et al. Resistance exercise and supraphysiologic androgen therapy in eugonadal men with HIV-related weight loss: a randomized controlled trial. JAMA. 1999;281:1282–90.CrossRefGoogle Scholar
  64. 64.
    Ferrando AA, Sheffield-Moore M, Wolf SE, Herndon DN, Wolfe RR. Testosterone administration in severe burns ameliorates muscle catabolism. Crit Care Med. 2001;29:1936–42.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nicholas Heming
    • 1
    • 2
    • 3
  • Sivanthiny Sivanandamoorthy
    • 1
    • 2
    • 3
  • Paris Meng
    • 1
    • 2
    • 3
  • Djillali Annane
    • 1
    • 2
    • 3
  1. 1.General Intensive Care UnitRaymond Poincaré HospitalGarchesFrance
  2. 2.School of Medicine Simone VeilUniversity of VersaillesVersaillesFrance
  3. 3.University Paris SaclayVersaillesFrance

Personalised recommendations