Advertisement

A Multi-granularity NC Program Optimization Approach for Energy Efficient Machining

  • X. X. Li
  • W. D. LiEmail author
  • F. Z. He
Chapter

Abstract

NC programs are widely developed and applied to various machining processes. However, the lack of effective NC program optimization strategy for the machining energy efficiency has been crippling the implementation of sustainability in companies. To address this issue, a multi-granularity NC program optimization approach for energy efficient machining has been developed and presented in this paper. This approach consists of two levels of granularities: the granularity of a group of NC programs for a setup where the features are machined on a single CNC machine with the same fixture and the granularity of a NC program. On the former level of granularity, the execution sequence of the NC programs for the setup of a part is optimized to reduce the energy consumed by the cutting tool change among the NC programs. On the latter level of granularity, the execution sequence of the features in the same NC program is optimized to reduce the energy consumed by the cutting tool’s traveling among the machining features. Experiments on the practical cases show that the optimization results from this approach are promising and the approach has significant potential of applicability in practice.

Keywords

Multi-granularity optimization Energy efficient machining NC program Sustainable manufacturing 

Notes

Acknowledgements

This research was supported by the Seventh European Community Framework Programme (Grant No. 610675), Hubei Province Natural Science Foundation (Grant No. 2016CFB555), and the Fundamental Research Funds for the Central Universities (Grant No. 2662016PY119). The paper reflects only the authors’ views and the Union is not liable for any use that may be made of the information contained therein.

References

  1. 1.
    Behrendt, T., Zein, A., & Min, S. (2012). Development of an energy consumption monitoring procedure for machine tools. CIRP Annals-Manufacturing Technology, 61, 43–46.CrossRefGoogle Scholar
  2. 2.
    Zhang, D. J., He, F. Z., Han, S. H., & Li, X. X. (2016). Quantitative optimization of interoperability during feature-based data exchange. Integrated Computer-Aided Engineering, 23(1), 31–50.CrossRefGoogle Scholar
  3. 3.
    Wu, Y. Q., He, F. Z., Zhang, D. J., Li, X. X. (2016). Service-oriented feature-based data exchange for cloud-based design and manufacturing. IEEE Transactions on Services Computing, 11, 1939–1974.CrossRefGoogle Scholar
  4. 4.
    Cai, X. T., Li, W. D., He, F. Z., & Li, X. X. (2015). Customized encryption of computer aided design models for collaboration in cloud manufacturing environment. Journal of Manufacturing Science and Engineering, 137(4), 040905.CrossRefGoogle Scholar
  5. 5.
    Kim, B. C., Mun, D., & Han, S. (2010). Retrieval of CAD model data based on Web Services for collaborative product development in a distributed environment. International Journal of Advanced Manufacturing Technology, 50(9–12), 1085–1099.CrossRefGoogle Scholar
  6. 6.
    Yuan, W. Q., Liu, Y. S., Zhao, J. J., & Wang, H. W. (2016). Pattern-based Integration of System Optimization in Mechatronic System Design. Advances in Engineering Software, 98, 23–37.CrossRefGoogle Scholar
  7. 7.
    Buckholtz, B., Ragai, I., & Wang, L. H. (2015). Cloud manufacturing: Current trends and future implementations. Journal of Manufacturing Science and Engineering, 137(4), 040902.CrossRefGoogle Scholar
  8. 8.
    Newman, S. T., Nassehi, A., Imani-Asrai, R., & Dhokia, V. (2012). Energy efficient process planning for CNC machining. CIRP Journal of Manufacturing Science and Technology, 5, 127–136.CrossRefGoogle Scholar
  9. 9.
    Li, X. X., Li, W. D., Cai, X. T., & He, F. Z. (2015). A hybrid optimization approach for sustainable process planning and scheduling. Integrated Computer-Aided Engineering, 22(4), 311–326.CrossRefGoogle Scholar
  10. 10.
    Hu, S. H., Liu, F., He, Y., & Hu, T. (2012). An on-line approach for energy efficiency monitoring of machine tools. Journal of Cleaner Production, 27, 133–140.CrossRefGoogle Scholar
  11. 11.
    Mouzon, G., & Yildirim, M. B. (2008). A framework to minimise total energy consumption and total tardiness on a single machine. International Journal of Sustainable Engineering, 1(2), 105–116.CrossRefGoogle Scholar
  12. 12.
    Fang, K., Uhan, N., Zhao, F., & Sutherland, J. W. (2011). A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. Journal of Manufacturing Systems, 30(4), 234–240.CrossRefGoogle Scholar
  13. 13.
    Bruzzone, A. A. G., Anghinolfi, D., Paolucci, M., & Tonelli, F. (2012). Energy-aware scheduling for improving manufacturing process sustainability: A mathematical model for flexible flow shops. CIRP Annals-Manufacturing Technology, 61(1), 459–462.CrossRefGoogle Scholar
  14. 14.
    Dai, M., Tang, D. B., Giret, A., Salido, M. A., & Li, W. D. (2013). Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and Computer-Integrated Manufacturing, 29, 418–429.CrossRefGoogle Scholar
  15. 15.
    Wang, L. (2013). Machine availability monitoring and machining process planning towards cloud manufacturing. CIRP Journal of Manufacturing Science and Technology, 6(4), 263–273.CrossRefGoogle Scholar
  16. 16.
    Zhu, H. W., Shao, Y. L., Liu, Y. S., & Zhao, J. J. (2016). Automatic hierarchical mid-surface abstraction of thin-walled model based on rib decomposition. Advances in Engineering Software, 97, 60–71.CrossRefGoogle Scholar
  17. 17.
    Kumar, H., Abbas, M., Mohammad, A., & Jafri, H. Z. (2013). Optimization of cutting parameters in CNC turning. Optimization, 3, 331–334.Google Scholar
  18. 18.
    Ojolo, S. J., & Ogunkomaiya, O. (2014). A study of effects of machining parameters on tool life. International Journal of Materials Science and Applications, 3, 183–199.CrossRefGoogle Scholar
  19. 19.
    Sarıkaya, M., & Güllü, A. (2014). Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL. Journal of Cleaner Production, 65, 604–616.CrossRefGoogle Scholar
  20. 20.
    Sood, P. K., Sehgal, R., Dwivedi, D. K. (2011). Optimization of turning parameters for surface roughness in CNC turning. Journal of Mechanical Engineering, 1, 26–31.Google Scholar
  21. 21.
    Saini, S. K., & Pradhan, S. K. (2014). Soft computing techniques for the optimization of machining parameter in CNC turning operation. International Journal of Emerging Technology and Advanced Engineering, 4(3), 117–124.Google Scholar
  22. 22.
    Das, S. R., Nayak, R. P., & Dhupal, D. (2012). Optimization of cutting parameters on tool wear and workpiece surface temperature in turning of AISI D2 steel. International Journal of Lean Thinking, 3, 140–156.Google Scholar
  23. 23.
    Islam, M., Buijk, A., Rais-Rohani, M., & Motoyama, K. (2015). Process parameter optimization of lap joint fillet weld based on FEM–RSM–GA integration technique. Advances in Engineering Software, 79, 127–136.CrossRefGoogle Scholar
  24. 24.
    Jiang, P., Wang, C. C., Zhou, Q., Shao, X. Y., Shu, L. S., & Li, X. B. (2016). Optimization of laser welding process parameters of stainless steel 316L using FEM, Kriging and NSGA-II. Advances in Engineering Software, 99, 147–160.CrossRefGoogle Scholar
  25. 25.
    Zhao, L., Liang, J., Zhong, Q. P., Yang, C., Sun, B., & Du, J. F. (2014). Numerical simulation on the effect of welding parameters on welding residual stresses in T92/S30432 dissimilar welded pipe. Advances in Engineering Software, 68, 70–79.CrossRefGoogle Scholar
  26. 26.
    Huang, J. D., Gao, L., & Li, X. Y. (2015). An effective teaching-learning-based cuckoo search algorithm for parameter optimization problems in structure designing and machining processes. Applied Soft Computing, 36, 349–356.CrossRefGoogle Scholar
  27. 27.
    Zhang, G. X., Cheng, J. X., Gheorghe, M., & Meng, Q. (2013). A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems. Applied Soft Computing, 13(3), 1528–1542.CrossRefGoogle Scholar
  28. 28.
    Jin, Y. A., He, Y., Fu, J. Z., Gan, W. F., & Lin, Z. W. (2014). Optimization of tool-path generation for material extrusion-based additive manufacturing technology. Additive Manufacturing, 1–4, 32–47.CrossRefGoogle Scholar
  29. 29.
    Barclaya, J., Dhokiaa, V., Nassehi, A. (2015). Generating milling tool paths for prismatic parts using genetic programming. In 9th CIRP Conference on Intelligent Computation in Manufacturing Engineering—CIRP ICME ’14, Vol. 33, pp. 490–495.CrossRefGoogle Scholar
  30. 30.
    Manav, C., Bank, H. S., & Lazoglu, I. (2013). Intelligent toolpath selection via multi-criteria optimization in complex sculptured surface milling. Journal of Intelligent Manufacturing, 24(2), 349–355.CrossRefGoogle Scholar
  31. 31.
    Medina-Rodriguez, N., Montiel-Ross, O., Sepulveda, R., & Castillo, O. (2012). Tool path optimization for computer numerical control machines based on parallel ACO. Engineering Letters, 20(1), 101.Google Scholar
  32. 32.
    Petunin, A. (2011). Tools path optimization for cnc cutting machines. Vestnik UGATU Systems Engineering and Information Technologies, 15(44), 179–182.Google Scholar
  33. 33.
    Pan, R., Zhang, Y. J., Ding, J. B., Cao, C., Wang, Z. Z., Jiang, T., et al. (2016). Rationality optimization of tool path spacing based on dwell time calculation algorithm. International Journal of Advanced Manufacturing Technology, 84(9), 2055–2065.CrossRefGoogle Scholar
  34. 34.
    Prajapati, R., Rajurkar, A., & Chaudhary, V. (2013). Tool path optimization of contouring operation and machining strategies for turbo machinery blades. International Journal of Engineering Trends and Technology, 4(5), 1731–1736.Google Scholar
  35. 35.
    Hsieh, H. T., & Chu, C. H. (2012). Optimization of tool path planning in 5-axis flank milling of ruled surfaces with improved PSO. International Journal of Precision Engineering and Manufacturing, 13(1), 77–84.CrossRefGoogle Scholar
  36. 36.
    Lu, Y. A., Ding, Y., & Zhu, L. M. (2016). Smooth tool path optimization for flank milling based on the gradient-based differential evolution method. Transactions of the ASME. Journal of Manufacturing Science and Engineering, 138(8), 081009.CrossRefGoogle Scholar
  37. 37.
    Kersting, P., & Zabel, A. (2009). Optimizing NC-tool paths for simultaneous five-axis milling based on multi-population multi-objective evolutionary algorithms. Advances in Engineering Software, 40, 452–463.CrossRefGoogle Scholar
  38. 38.
    Kuo, C. L., Chu, C. H., Li, Y., Li, X. Y., & Gao, L. (2015). Electromagnetism-like algorithms for optimized tool path planning in 5-axis flank machining. Computers & Industrial Engineering, 84, 70–78.CrossRefGoogle Scholar
  39. 39.
    Gutowski, T., Dahmus, J., Thiriez, A. (2006). Electrical energy requirements for manufacturing processes. In Proceedings of 13th CIRP International Conference on LCE.Google Scholar
  40. 40.
    Kara, S., & Li, W. (2011). Unit process energy consumption models for material removal processes. CIRP Annals-Manufacturing Technology, 60(1), 37–40.CrossRefGoogle Scholar
  41. 41.
    Li, L., Yan, J., & Xing, Z. (2013). Energy requirements evaluation of milling machines based on thermal equilibrium and empirical modeling. Journal of Cleaner Production, 52, 113–121.CrossRefGoogle Scholar
  42. 42.
    Lin, W. W., Yu, D. Y., Zhang, C. Y., Tian, Y. H., Liu, S. Q., Luo, M. (2016). Multi-objective optimization of machining parameters in multi-pass turning operations for low-carbon manufacturing. Journal of Engineering Manufacturing.  https://doi.org/10.1177/0954405416629098.
  43. 43.
    Anand, Y., Gupta, A., Abrol, A., Ayush, Gupta, Kumar, V., Tyagi, S. K., et al. (2016). Optimization of machining parameters for green manufacturing. Cogent Engineering, 3(1), 1–16.Google Scholar
  44. 44.
    Campatelli, G., Lorenzini, L., & Scippa, A. (2014). Optimization of process parameters using a response surface method for minimizing power consumption in the milling of carbon steel. Journal of Cleaner Production, 66, 309–316.CrossRefGoogle Scholar
  45. 45.
    Kant, G., & Sangwan, K. S. (2014). Prediction and optimization of machining parameters for minimizing power consumption and surface roughness in machining. Journal of Cleaner Production, 83, 151–164.CrossRefGoogle Scholar
  46. 46.
    Hu, S. H., Liu, F., He, Y., & Hu, T. (2012). An on-line approach for energy efficiency monitoring of machine tools. Journal of Cleaner Production, 27, 133–140.CrossRefGoogle Scholar
  47. 47.
    Camposeco-Negrete, C. (2013). Optimizing of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA. Journal of Cleaner Production, 53, 195–203.CrossRefGoogle Scholar
  48. 48.
    Yan, J., & Li, L. (2013). Multi-objective optimization of milling parameters—The trade-offs between energy, production rate and cutting quality. Journal of Cleaner Production, 52, 462–471.CrossRefGoogle Scholar
  49. 49.
    Wang, S., Lu, X., Li, X. X., & Li, W. D. (2015). A systematic approach of process planning and scheduling optimization for sustainable machining. Journal of Cleaner Production, 87, 914–929.CrossRefGoogle Scholar
  50. 50.
    Kong, D., Choi, S., Yasui, Y., Pavanaskar, S., Dornfeld, D., & Wright, P. (2011). Software-based tool path evaluation for environmental sustainability. Journal of Manufacturing Systems, 30, 241–247.CrossRefGoogle Scholar
  51. 51.
    Aramcharoen, A., Mativenga, P. T. (2014). Critical factors in energy demand modelling for CNC milling and impact of toolpath strategy. Journal of Cleaner Production, 78, 1–12.CrossRefGoogle Scholar
  52. 52.
    Avram, O. I., & Xirouchakis, P. (2011). Evaluating the use phase energy requirements of a machine tool system. Journal of Cleaner Production, 19, 699–711.CrossRefGoogle Scholar
  53. 53.
    Narooei, K. D., & Ramli, R. (2014). Application of artificial intelligence methods of tool path optimization in CNC machine: A review. Research Journal of Applied Sciences, Engineering and Technology, 8(6), 746–754.CrossRefGoogle Scholar
  54. 54.
    Li, W. D., & McMahon, C. A. (2007). A simulated annealing-based optimization approach for integrated process planning and scheduling. International Journal of Computer Integrated Manufacturing, 20(1), 80–95.CrossRefGoogle Scholar
  55. 55.
    Tairidis, G., Foutsitzi, G., Koutsianitis, P., & Stavroulakis, G. E. (2016). Fine tuning of a fuzzy controller for vibration suppression of smart plates using. Advances in Engineering Software, 101, 123–135.CrossRefGoogle Scholar
  56. 56.
    Marthinus, Ras N., Daniel, Wilke N., Albert, Groenwold A., & Schalk, Kok. (2014). On rotationally invariant continuous-parameter genetic algorithms. Advances in Engineering Software, 78, 52–59.CrossRefGoogle Scholar
  57. 57.
    Buiga, O., & Tudose, L. (2014). Optimal mass minimization design of a two-stage coaxial helical speed reducer with Genetic Algorithm. Advances in Engineering Software, 68, 25–32.CrossRefGoogle Scholar
  58. 58.
    Bank, M., Ghomi Fatemi, S. M. T., Jolai, F., & Behnamian, J. (2012). Application of particle swarm optimization and simulated annealing algorithms in flow shop scheduling problem under linear deterioration. Advances in Engineering Software, 47(1), 1–6.CrossRefGoogle Scholar
  59. 59.
    Musharavati, F., & Hamouda, A. S. M. (2012). Enhanced simulated-annealing-based algorithms and their applications to process planning in reconfigurable manufacturing systems. Advances in Engineering Software, 45(1), 80–90.CrossRefGoogle Scholar
  60. 60.
    Rezaei, G., Afshar, H. M., & Rohani, M. (2014). Layout optimization of looped networks by constrained ant colony optimisation algorithm. Advances in Engineering Software, 70, 123–133.CrossRefGoogle Scholar
  61. 61.
    He, J. J., & Hou, Z. E. (2012). Ant colony algorithm for traffic signal timing optimization. Advances in Engineering Software, 43(1), 14–18.CrossRefGoogle Scholar
  62. 62.
    Uğur, A., & Aydin, D. (2009). An interactive simulation and analysis software for solving TSP using Ant Colony Optimization algorithms. Advances in Engineering Software, 40(5), 341–349.CrossRefGoogle Scholar
  63. 63.
    Trivedi, R. R., Pawaskar, D. N., & Shimpi, R. P. (2016). Optimization of static and dynamic travel range of electrostatically driven microbeams using particle swarm optimization. Advances in Engineering Software, 97, 1–16.CrossRefGoogle Scholar
  64. 64.
    Yan, X. H., He, F. Z., Chen, Y. L., & Yuan, Z. Y. (2015). An efficient improved particle swarm optimization based on prey behavior of fish schooling. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 9(4), 1–10.CrossRefGoogle Scholar
  65. 65.
    Abbass, H. A. (2001). Marriage in honey-bee optimization (MBO): A haplometrosis polygynous swarming approach. In The Congress on Evolutionary Computation (CEC2001) (pp. 207–214). Seoul, Korea.Google Scholar
  66. 66.
    Wen, X. Y., Li, X. Y., Gao, L., & Sang, H. Y. (2014). Honey bees mating optimization algorithm for process planning problem. Journal of Intelligent Manufacturing, 25(3), 459–472.CrossRefGoogle Scholar
  67. 67.
    Cheng, Y., He, F., Wu, Y., & Zhang, D. (2016). Meta-operation conflict resolution for human-human interaction in collaborative feature-based CAD systems. Cluster Computing, 19(1), 237–253.CrossRefGoogle Scholar
  68. 68.
    Li, K., He, F. Z., & Chen, X. (2016). Real-time object tracking via compressive feature selection. Frontiers of Computer Science, 10(4), 689–701.CrossRefGoogle Scholar
  69. 69.
    Sun, J., He, F. Z., Chen, Y. L., & Chen, X. (2016). A multiple template approach for robust tracking of fast motion target. Applied Mathematics-A Journal of Chinese Universities, 31(2), 177–197.MathSciNetCrossRefGoogle Scholar
  70. 70.
    Ni, B., He, F. Z., Pan, Y., & Yuan, Z. Y. (2016). Using shapes correlation for active contour segmentation of uterine fibroid ultrasound images in computer-aided therapy. Applied Mathematics-A Journal of Chinese Universities, 31(1), 37–52.MathSciNetCrossRefGoogle Scholar
  71. 71.
    Zhou, Y., He, F. Z., & Qiu, Y. M. (2016). Optimization of parallel iterated local search algorithms on graphics processing unit. Journal of Supercomputing, 72(6), 2394–2416.CrossRefGoogle Scholar
  72. 72.
    Zhou, Y., He, F. Z., & Qiu, Y. M. (2017). Dynamic strategy based parallel ant colony optimization on GPUs for TSPs. Science China Information Sciences, 60(6), 06812.  https://doi.org/10.1007/s11432-015-0594-2.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of InformaticsHuazhong Agricultural UniversityWuhanChina
  2. 2.Faculty of Engineering, Environment and ComputingCoventry UniversityCoventryUK
  3. 3.School of Computer Science and TechnologyWuhan UniversityWuhanChina

Personalised recommendations