A Hybrid Optimization Approach for Sustainable Process Planning and Scheduling

  • X. X. Li
  • W. D. LiEmail author
  • X. T. Cai
  • F. Z. He


Process planning and scheduling are important stages in manufacturing, and good strategies can significantly improve the energy performance of manufacturing to achieve sustainability. In this paper, an innovative optimization approach has been developed to facilitate sustainable process planning and scheduling. In the approach, honeybee mating and annealing processes are simulated to optimize multi-objectives including energy consumption, makespan, and the balanced machine utilization. Experiments on practical cases show that the optimization results from this approach are promising in comparison with those from a genetic algorithm, a honeybee mating optimization algorithm, ant colony optimization, and a simulated annealing algorithm, respectively.


Honeybee mating optimization Simulated annealing Sustainable manufacturing Process planning Scheduling 



This research was carried out as a part of the Smarter and CAPP-4-SMEs projects which are supported by the 7th European Community Framework Programme under the grant agreement No 610675 (PEOPLE-2013-IAPP-610675) and No 314024 (FP7-2012-NMP-ICT-FoF). The paper reflects only the authors’ views, and the Union is not liable for any use that may be made of the information contained therein.


  1. 1.
    Weinert, N., Chiotellis, S., & Seliger, G. (2011). Methodology for planning and operating energy-efficient production systems. CIRP Annals—Manufacturing Technology, 60(1), 41–44.CrossRefGoogle Scholar
  2. 2.
    Newman, S. T., Nassehi, A., Imani-Asrai, R., & Dhokia, V. (2012). Energy efficient process planning for CNC machining. CIRP Journal of Manufacturing Science and Technology, 5(2), 127–136.CrossRefGoogle Scholar
  3. 3.
    EN 16001: Energy management systems—Requirements with guidance for use, European Standard 2010.Google Scholar
  4. 4.
    ISO 14040: Environmental management—Life cycle assessment—Principles and framework,
  5. 5.
    ISO 14044: Environmental management—Life cycle assessment—Requirements and guidelines,
  6. 6.
    Sinden, G. (2009). The contribution of pas 2050 to the evolution of international greenhouse gas emission standards. International Journal of Life Cycle Assessment, 14(3), 195–203.CrossRefGoogle Scholar
  7. 7.
    Jovane, F., Yoshikawa, H., Alting, L., Boër, C. R., Westkamper, E., & Williams, D. (2008). The incoming global technological and industrial revolution towards competitive sustainable manufacturing. CIRP Annals—Manufacturing Technology, 57(2), 641–659.CrossRefGoogle Scholar
  8. 8.
    Zhang, X. F., Zhang, S. Y., Hu, Z. Y., Yu, G., Pei, C. H., & Sa, R. N. (2012). Identification of connection units with high GHG emissions for low-carbon product structure design. Journal of Cleaner Production, 27(6), 118–125.CrossRefGoogle Scholar
  9. 9.
    Behrendt, T., Zein, A., & Min, S. (2012). Development of an energy consumption monitoring procedure for machine tools. CIRP Annals—Manufacturing Technology, 61(1), 43–46.CrossRefGoogle Scholar
  10. 10.
    Li, X. X., Li, W. D., Cai, X. T., & He, F. Z. (2013). A honey-bee mating optimization approach for sustainable manufacturing process planning and scheduling. In Proceedings of the International Conference on Computer Supported Cooperative Work in Design. Whistler, BC, Canada (pp. 465–470), June 27–29, 2013.Google Scholar
  11. 11.
    Gutowski, T., Dahmus, J., & Thiriez, A. (2006). Electrical energy requirements for manufacturing processes. In 13th CIRP International Conference on Life Cycle Engineering (Vol. 31(1), pp. 623–638).Google Scholar
  12. 12.
    Kara, S., & Li, W. (2011). Unit process energy consumption models for material removal processes. CIRP Annals—Manufacturing Technology, 60(1), 37–40.CrossRefGoogle Scholar
  13. 13.
    Diaz, N., Redelsheimer, E., & Dornfeld D. (2011). Energy consumption characterization and reduction strategies for milling machine tool use. Glocalized Solutions for Sustainability in Manufacturing 263–267.Google Scholar
  14. 14.
    Li, L., Yan, J., & Xing, Z. (2013). Energy requirements evaluation of milling machines based on thermal equilibrium and empirical modelling. Journal of Cleaner Production, 52, 113–121.CrossRefGoogle Scholar
  15. 15.
    Mori, M., Fujishima, M., Inamasu, Y., & Oda, Y. (2011). A study on energy efficiency improvement for machine tools. CIRP Annals—Manufacturing Technology, 60(1), 145–148.CrossRefGoogle Scholar
  16. 16.
    He, Y., Liu, F., Wu, T., Zhong, F. P., & Peng, B. (2011). Analysis and estimation of energy consumption for numerical control machining. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 226(2), 255–266.CrossRefGoogle Scholar
  17. 17.
    Balogun, V. A., & Mativenga, P. T. (2013). Modelling of direct energy requirements in mechanical machining processes. Journal of Cleaner Production, 41, 179–186.CrossRefGoogle Scholar
  18. 18.
    Duflou, J. R., Kellens, K., Renaldi, Guo Y., & Dewulf, W. (2012). Critical comparison of methods to determine the energy input for discrete manufacturing processes. CIRP Annals—Manufacturing Technology, 61(1), 63–66.CrossRefGoogle Scholar
  19. 19.
    ISO/WD 14955-1 Environmental Evaluation of Machine Tools Part 1: Energy-saving Design Methodology for Machine Tools, International Organization for Standardization, Geneva, Switzerland.Google Scholar
  20. 20.
    Seow, Y., & Rahimifard, S. (2011). A framework for modelling energy consumption within manufacturing systems. CIRP Journal of Manufacturing Science and Technology, 4(3), 258–264.CrossRefGoogle Scholar
  21. 21.
    Kara, S., Manmek, S., & Herrmann, C. (2010). Global manufacturing and the embodied energy of products. CIRP Annals—Manufacturing Technology., 59(1), 29–32.CrossRefGoogle Scholar
  22. 22.
    Herrmann, C., & Thiede, S. (2009). Process chain simulation to foster energy efficiency in manufacturing. CIRP Journal of Manufacturing Science and Technology, 1(4), 221–229.CrossRefGoogle Scholar
  23. 23.
    GillesMouzon, Yildirim M. (2008). A framework to minimise total energy consumption and total tardiness on a single machine. International Journal of Sustainable Engineering, 1(2), 105–116.CrossRefGoogle Scholar
  24. 24.
    Bruzzone, A. A. G., Anghinolfi, D., Paolucci, M., & Tonelli, F. (2012). Energy-aware scheduling for improving manufacturing process sustainability: A mathematical model for flexible flow shops. CIRP Annals—Manufacturing Technology, 61(1), 459–462.CrossRefGoogle Scholar
  25. 25.
    Siddique, N., & Adeli, H. (2013). Computational intelligence: Synergies of fuzzy logic. Neural Networks and Evolutionary Computing: Wiley.CrossRefGoogle Scholar
  26. 26.
    Adeli, H., & Hung, S. L. (1995). Machine Llearning—Neural networks, genetic algorithms, and fuzzy sets. New York: Wiley.zbMATHGoogle Scholar
  27. 27.
    Adeli, H., & Sarma, K. C. (2006). Cost optimization of structures: Fuzzy logic, genetic algorithms, and parallel computing. Wiley, New York.CrossRefGoogle Scholar
  28. 28.
    Hejazi, F., Toloue, I., Jaafar, M. S., & Noorzaei, J. (2013). Optimization of earthquake energy dissipation system by genetic algorithm. Computer-Aided Civil and Infrastructure Engineering, 28(10), 796–810.Google Scholar
  29. 29.
    Jia, L., Wang, Y., & Fan, L. (2014). Multiobjective bilevel optimization for production-distribution planning problems using hybrid genetic algorithm. Integrated Computer Aided Engineering, 21(1), 77–90.Google Scholar
  30. 30.
    Lin, D. Y., & Ku, Y. H. (2014). Using genetic algorithms to optimize stopping patterns for passenger rail transportation. Computer-Aided Civil & Infrastructure Engineering, 29(4), 264–278.CrossRefGoogle Scholar
  31. 31.
    Zhu, W., Hu, H., & Huang, Z. (2014). Calibrating rail transit assignment models with genetic algorithm and automated fare collection data. Computer-Aided Civil and Infrastructure Engineering, 29(7), 518–530.CrossRefGoogle Scholar
  32. 32.
    Campomanes-Álvarez, B. R., Cordón, O., & Damas, S. (2013). Evolutionary multi-objective optimization for mesh simplification of 3D open models. Integrated Computer-Aided Engineering, 20(4), 375–390.Google Scholar
  33. 33.
    Joly, M. M., Verstraete, T., & Paniagua, G. (2014). Integrated multifidelity, multidisciplinary evolutionary design optimization of counterrotating compressors. Integrated Computer Aided Engineering, 21(3), 249–261.Google Scholar
  34. 34.
    Luna, J., Mar, Romero J., Romero, C., & Ventura, S. (2014). Reducing gaps in quantitative association rules: A genetic programming free-parameter algorithm. Integrated Computer-Aided Engineering, 21(4), 321–337.Google Scholar
  35. 35.
    Molina-García, M., Calle-Sánchez, J., González-Merino, C., Fernández-Durán, A., & Alonso, J. I. (2014). Design of in-building wireless networks deployments using evolutionary algorithms. Integrated Computer-Aided Engineering, 21(4), 367–385.Google Scholar
  36. 36.
    Pedrino, E. C., Roda, V. O., Kato, E. R. R., Tsunaki, R. H., Tsunaki, R. H., & Tsunaki, R. H. (2013). A genetic programming based system for the automatic construction of image filters. Integrated Computer-Aided Engineering, 20(3), 275–287.Google Scholar
  37. 37.
    Alonso, P., & Montes, S. (2014). On the use of fuzzy partitions to protect data. Integrated Computer-Aided Engineering, 21(4), 355–366.Google Scholar
  38. 38.
    Reyes, O., Morell, C., & Ventura, S. (2014). Evolutionary feature weighting to improve the performance of multi-label lazy algorithms. Integrated Computer-Aided Engineering, 21(4), 339–354.Google Scholar
  39. 39.
    Li, W. D., & Mcmahon, C. A. (2007). A simulated annealing-based optimization approach for integrated process planning and scheduling. International Journal of Computer Integrated Manufacturing, 20(1), 80–95.CrossRefGoogle Scholar
  40. 40.
    Forcael, E., González, V., Orozco, F., Vargas, S., Pantoja, A., & Moscoso, P. (2014). Ant colony optimization model for tsunamis evacuation routes. Computer-Aided Civil & Infrastructure Engineering, 29(10), 723–737.CrossRefGoogle Scholar
  41. 41.
    Hsu, W. Y. (2013). Application of quantum-behaved particle swarm optimization to motor imagery EEG classification. International Journal of Neural Systems, 23(06), 63–331.CrossRefGoogle Scholar
  42. 42.
    Iacca, G., Caraffini, F., & Neri, F. (2014). Multi-strategy coevolving aging particle optimization. International Journal of Neural Systems, 24(01), 1450008.CrossRefGoogle Scholar
  43. 43.
    Shafahi, Y., & Bagherian, M. (2013). A customized particle swarm method to solve highway alignment optimization problem. Computer-Aided Civil & Infrastructure Engineering, 28(1), 52–67.CrossRefGoogle Scholar
  44. 44.
    Tao, H., Zain, J. M., Ahmed, M. M., Abdalla, A. N., & Jing, W. (2012). A wavelet-based particle swarm optimization algorithm for digital image watermarking. Integrated Computer Aided Engineering, 19(1), 81–91.Google Scholar
  45. 45.
    Wu, J. W., Tseng, J. C. R., & Tsai, W. N. (2014). A hybrid linear text segmentation algorithm using hierarchical agglomerative clustering and discrete particle swarm optimization. Integrated Computer Aided Engineering, 21(1), 35–46.Google Scholar
  46. 46.
    Zeng, Z., Xu, J., Wu, S., & Shen, M. (2014). Antithetic method-based particle swarm optimization for a queuing network problem with fuzzy data in concrete transportation systems. Computer-aided Civil & Infrastructure Engineering, 29(10), 771–800.CrossRefGoogle Scholar
  47. 47.
    Wen, X. Y., Li, X. Y., Gao, L., Sang, H. Y. (2014). Honey bees mating optimization algorithm for process planning problem. Journal of Intelligent Manufacturing, 25(3), 459–472.CrossRefGoogle Scholar
  48. 48.
    Pham, D. T., Castellani, M., & Ghanbarzadeh, A. (2007). Preliminary design using the bees algorithm. In Proceedings of Eighth International Conference on Laser Metrology, CMM and Machine Tool Performance. LAMDAMAP, Euspen, Cardiff, UK (pp. 420–429).Google Scholar
  49. 49.
    Abbass, H. A. (2001). Marriage in honey bees optimisation: A haplometrosis polygynous swarming approach. In Proceedings of the Congress on Evolutionary Computation (pp. 207–214).Google Scholar
  50. 50.
    Koudil, M., Benatchba, K., Tarabet, A., & Sahraoui, E. B. (2007). Using artificial bees to solve partitioning and scheduling problems in codesign. Applied Mathematics and Computation, 186(2), 1710–1722.MathSciNetCrossRefGoogle Scholar
  51. 51.
    Curkovic, P., & Jerbic, B. (2007). Honey-bees optimization algorithm applied to path planning problem. International Journal of Simulation Modelling, 6(3), 154–164.CrossRefGoogle Scholar
  52. 52.
    Fathian, M., & Amiri, B. (2008). A honeybee-mating approach for cluster analysis. International Journal of Advanced Manufacturing Technology, 38(7–8), 809–821.CrossRefGoogle Scholar
  53. 53.
    Marinakis, Y., Marinaki, M., & Matsatsinis, N. (2008). A hybrid clustering algorithm based on honey bees mating optimization and greedy randomized adaptive search procedure. In International Conference on Learning and Intelligent Optimization, Berlin, Heidelberg (pp. 138–152).Google Scholar
  54. 54.
    Niknam, T., Taheri, S. I., Aghaei, J., Tabatabaei, S., & Nayeripour, M. (2011). A modified honey bee mating optimization algorithm for multiobjective placement of renewable energy resources. Applied Energy, 88(12), 4817–4830.CrossRefGoogle Scholar
  55. 55.
    Li, W. D., Ong, S. K., & Nee, A. Y. C. (2004). Optimization of process plans using a constraint-based tabu search approach. International Journal of Production Research, 42(10), 1955–1985.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of InformaticsHuazhong Agricultural UniversityWuhanPeople’s Republic of China
  2. 2.Faculty of Engineering, Environment and ComputingCoventry UniversityCoventryUK
  3. 3.School of Computer Science and TechnologyWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations