Skip to main content

Treatment of Bone Metastases: Future Directions

  • Chapter
  • First Online:
Book cover Management of Bone Metastases

Abstract

Four main future directions in the treatment of bone metastases can likely be envisaged: fewer tumors in general population, fewer bone metastases in patients affected by tumors, less invasive therapies, and in selected cases highly invasive surgery also in metastatic patients who have been often banished to palliative treatment so far. Development and improvements of current techniques and introduction of new technological achievements are expected to improve actual therapeutic regimens. Nanotechnologies and a combination of diagnosis and treatment in the same time (theranostics) are likely to deeply change our approach to bone metastatic disease and, we hope, its results. New and less invasive surgical procedures are going to progressively decrease the surgical burden on most of the metastatic patients who will still need surgery, but at the same time, a growing number of these patients will undergo highly invasive surgery, due to the application of the criteria of primary tumor surgery also to metastatic patients, thanks to the improved survival. The future of the treatment of bone metastases will surely be a varied and variegated future, ranging from the use of extremely small devices, like nanoprobes, to the use of megaprostheses, and maybe also combinations of them. The clinician will have to be ready to manage a continuously growing range of therapeutic options and to have the capability to choose the right one for the specific patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  Google Scholar 

  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  Google Scholar 

  3. Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K. Nanomaterials for theranostics: recent advances and future challenges. Chem Rev. 2015;115:327–94.

    Article  CAS  PubMed  Google Scholar 

  4. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW, et al. Cancer genome landscapes. Science. 2013;339:1546–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006;11:812–8.

    Article  CAS  PubMed  Google Scholar 

  6. Hirsjärvi S, Passirani C, Benoit JP. Passive and active tumor targeting with nanocarriers. Curr Drug Discov Technol. 2011;8:188–96.

    Article  PubMed  Google Scholar 

  7. Bonzi G, Salmaso S, Scomparin A, Eldar-Boock A, Satch-Fainaro R, Caliceti P. Novel pullulan bioconjugate for selective breast cancer bone metastases treatment. Bioconjug Chem. 2015;26:489–501.

    Article  CAS  PubMed  Google Scholar 

  8. Chen H, Li G, Chi H, Wang D, Tu C, Pan L, Zhu L, Qiu F, Guo F, Zhu X. Alendronate-conjugated amphiphilic hyperbranched polymer based on Boltorn H40 and poly(ethylene glycol) for bone-targeted drug delivery. Bioconjug Chem. 2012;23:1915–24.

    Article  CAS  PubMed  Google Scholar 

  9. Miller K, Erez R, Segal E, Shabat D, Satchi-Fainaro R. Targeting bone metastases with a bispecific anticancer and antiangiogenic polymer-alendronate-taxane conjugate. Angew Chem. 2009;48:2949–54.

    Article  CAS  Google Scholar 

  10. Pignatello R, Sarpietro MG, Castelli F. Synthesis and biological evaluation of a new polymeric conjugate and nanocarrier with osteotropic properties. J Funct Biomater. 2012;3:79–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krishnan S, Diagaradjane P, Cho S. Nanoparticle-mediated thermal therapy: evolving strategies for prostate cancer therapy. Int J Hyperth. 2010;26:775–89.

    Article  Google Scholar 

  12. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol. 2011;103:317–24.

    Article  Google Scholar 

  13. Agarwal A, Mackey MA, El-Sayed MA, Bellamkonda RV. Remote triggered release of doxorubicin in tumors by synergistic application of thermosensitive liposomes and gold nanorods. ACS Nano. 2011;5:4919–26.

    Article  CAS  PubMed  Google Scholar 

  14. Park JH, von Maltzahn G, Ong LL, Centrone A, Hatton TA, Ruoslahti E, et al. Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery. Adv Mater. 2010;22:880–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Green B, Cobb ARM, Hopper C. Photodynamic therapy in the management of lesions of the head and neck. Br J Oral Maxillofac Surg. 2013;51:283–7.

    Article  PubMed  Google Scholar 

  16. Nahashima A, Nagayasu T. Current status of photodynamic therapy in digestive tract carcinoma in Japan. Int J Mol Sci. 2015;16:3430–40.

    Google Scholar 

  17. Simone CB, Cengel KA. Photodynamic therapy for lung cancer and malignant pleural mesothelioma. Semin Oncol. 2014;41:820–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yano T, Muto M, Yoshimura K, Niimi M, Ezoe Y, Yoda Y, et al. Phase I study of photodynamic therapy using talaporfin sodium and diode laser for local failure after chemoradiotherpay for esophageal cancer. Radiat Oncol. 2012;7:113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dagan R, Lo SS, Redmond KJ, Poon I, Foote MC, Lohr F, et al. A multi-national report on stereotactic body radiotherapy for oligometastases: patient selection and follow-up. Acta Oncol. 2016;55:633–7.

    Article  CAS  PubMed  Google Scholar 

  20. Tree AC, Khoo VS, Eeles RA, Ahmed M, Dearnaley DP, Hawkins MA, et al. Stereotactic body radiotherapy for oligometastases. Lancet Oncol. 2013;14:e28–37.

    Article  PubMed  Google Scholar 

  21. Hellman S, Weichselbaum RR. Oligometastases. J Clin Oncol. 1995;13:8–10.

    Article  CAS  PubMed  Google Scholar 

  22. El-Amm J, Aragon-Ching JB. Targeting bone metastases in metastatic castration-resistant prostate cancer. Clin Med Insights Oncol. 2016;10:11–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Kairemo K, Joensuu T. Radium-223-dichloride in castration resistant metastatic prostate cancer-preliminary results of the response evaluation using F-18-fluoride PET/CT. Diagnostics. 2015;5:413–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fosså SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.

    Article  CAS  PubMed  Google Scholar 

  25. Yuan J, Liu C, Liu X, Wang Y, Kuai D, Zhang G, et al. Efficacy and safety of 177Lu-EDTMP in bone metastatic pain palliation in breast cancer and hormone refractory prostate cancer: a phase II study. Clin Nucl Med. 2013;38:88–92.

    Article  PubMed  Google Scholar 

  26. Song L, Falzone N, Vallis KA. EGF-coated gold nanoparticles provide an efficient nano-scale delivery system for the molecular radiotherapy of EGFR-positive cancer. Int J Radiat Biol. 2016;21:1–8.

    Google Scholar 

  27. Miklavčič D, Serša G, Brecelj E, Gehl J, Soden D, Bianchi G, et al. Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors. Med Biol Eng Comput. 2012;50:1213–25.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Callstrom MR, Dupuy DE, Solomon SB, Beres RA, Littrup PJ, Davis KW, et al. Percutaneous image-guided cryoablation of painful metastases involving bone: multicenter trial. Cancer. 2013;119:1033–41.

    Article  PubMed  Google Scholar 

  29. Damian E, Dupuy DE, Liu D, Hartfeil D, Hanna L, Blume JD, et al. Percutaneous radiofrequency ablation of painful osseous metastases: a multicenter American College of Radiology Imaging Network trial. Cancer. 2010;116:989–97.

    Article  Google Scholar 

  30. Deschamps F, Farouil G, Ternes N, Gaudin A, Hakime A, Tselikas L, et al. Thermal ablation techniques: a curative treatment of bone metastases in selected patients? Eur Radiol. 2014;24:1971–80.

    Article  CAS  PubMed  Google Scholar 

  31. Goetz MP, Callstrom MR, Charboneau JW, Farrell MA, Maus TP, Welch TJ, et al. Percutaneous image-guided radiofrequency ablation of painful metastases involving bone: a multicenter study. J Clin Oncol. 2004;22:300–6.

    Article  PubMed  Google Scholar 

  32. McMenomy BP, Kurup AN, Johnson GB, Carter RE, McWilliams RR, Markovic SN, et al. Percutaneous cryoablation of musculoskeletal oligometastatic disease for complete remission. J Vasc Interv Radiol. 2013;24:207–13.

    Article  PubMed  Google Scholar 

  33. Thacker PG, Callstrom MR, Curry TB, Mandrekar JN, Atwell TD, Goetz MP, et al. Palliation of painful metastatic disease involving bone with imaging-guided treatment: comparison of patients’ immediate response to radiofrequency ablation and cryoablation. AJR Am J Roentgenol. 2011;197:510–5.

    Article  PubMed  Google Scholar 

  34. Thanos L, Mylona S, Galani P, Tzavoulis D, Kalioras V, Tanteles S, et al. Radiofrequency ablation of osseous metastases for the palliation of pain. Skelet Radiol. 2008;37:189–94.

    Article  CAS  Google Scholar 

  35. Kurup AN, Callstrom MR. Ablation of musculoskeletal metastases: pain palliation, fracture risk reduction, and oligometastatic disease. Tech Vasc Interv Radiol. 2013;16:253–61.

    Article  PubMed  Google Scholar 

  36. Callstrom MR, Kurup AN. Percutaneous ablation for bone and soft tissue metastases—why cryoablation? Skelet Radiol. 2009;38:835–9.

    Article  Google Scholar 

  37. Liberman B, Gianfelice D, Inbar Y, Beck A, Rabin T, Shabshin N, et al. Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: a multicenter study. Ann Surg Oncol. 2009;16:140–6.

    Article  PubMed  Google Scholar 

  38. Tempany CM, McDannold NJ, Hynynen K, Jolesz FA. Focused ultrasound surgery in oncology: overview and principles. Radiology. 2011;259:39–56.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lo VC, Akens MK, Moore S, Yee AJ, Wilson BC, Whyne CM. Beyond radiation therapy: photodynamic therapy maintains structural integrity of irradiated healthy and metastatically involved vertebrae in a pre-clinical in vivo model. Breast Cancer Res Treat. 2012;135:391–401.

    Article  CAS  PubMed  Google Scholar 

  40. Zimel MN, Hwang S, Riedel ER, Healey JH. Carbon fiber intramedullary nails reduce artifact in postoperative advanced imaging. Skelet Radiol. 2015;44:1317–25.

    Article  Google Scholar 

  41. Vegt P, Muir JM, Block JE. The photodynamic bone stabilization system: a minimally invasive, percutaneous intramedullary polymeric osteosynthesis for simple and complex long bone fractures. Med Devices (Auckl). 2014;7:453–61.

    Google Scholar 

  42. Hadjipanayis CG, Widhalm G, Stummer W. What is the surgical benefit of utilizing 5-aminolevulinic acid for fluorescence-guided surgery of malignant gliomas? Neurosurgery. 2015;77:663–73.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7:392–401.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao S, Wu J, Wang C, Liu H, Dong X, Shi C, et al. Intraoperative fluorescence-guided resection of high-grade malignant gliomas using 5-aminolevulinic acid-induced porphyrins: a systematic review and meta-analysis of prospective studies. PLoS One. 2013;8:e63682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McElroy M, Kaushal S, Luiken GA, Talamini MA, Moossa AR, Hoffman RM, et al. Imaging of primary and metastatic pancreatic cancer using a fluorophore conjugated anti-CA19-9 antibody for surgical navigation. World J Surg. 2008;32:1057.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med. 2011;17:1315–9.

    Article  CAS  PubMed  Google Scholar 

  47. Miwa S, Matsumoto Y, Hiroshima Y, Yano S, Uehara F, Yamamoto M, et al. Fluorescence-guided surgery of prostate cancer bone metastasis. J Surg Res. 2014;192:124–33.

    Article  PubMed  Google Scholar 

  48. Miwa S, De Magalhães N, Toneri M, Zhang Y, Cao W, Bouvet M, et al. Fluorescence-guided surgery of human prostate cancer experimental bone metastasis in nude mice using anti-CEA DyLight 650 for tumor illumination. J Orthop Res. 2016;34:559–65.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Scoccianti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scoccianti, G., Capanna, R. (2019). Treatment of Bone Metastases: Future Directions. In: Denaro, V., Di Martino, A., Piccioli, A. (eds) Management of Bone Metastases. Springer, Cham. https://doi.org/10.1007/978-3-319-73485-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73485-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73484-2

  • Online ISBN: 978-3-319-73485-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics