Design of a Recommender System for Intelligent Classrooms Based on Multiagent Systems

  • Dulce Rivero-Albarrán
  • Francklin Rivas-Echeverria
  • Laura Guerra
  • Brian Arellano
  • Stalin Arciniegas
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 721)


In this work it’s presented the description of a Recommender Systems to be used in a learning environment. For this, it’s defined the diverse recommendation methods that can be used: Content-based Recommendations, Collaboration recommendations and Hybrid Systems. It is proposed a Teaching agent design for obtaining the most appropriate learning objects based on Multiagent Systems framework composed of a Planning Agent, a Recommendation System and a Learning Object Management System; all of them collaborating on an intelligent platform. This design can be used in intelligent classrooms because it can adapt the environment and the teaching contents according to the needs of each student.


Recommender System Intelligent classrooms Multiagent systems Learning objects Learning environments 



The authors of this paper thank the support given by PUCESI to the project: Intelligent platform in educational environments case: PUCESI Student Office.


  1. 1.
    Lops, P., de Gemmis, M., Semeraro, G., Handbook, R.S.: Content-based recommender systems: state of the Art and Trends. In: Ricci, F., Rokach, L., Shapira, B. Kantor, P.B. (eds.) Recommender Systems Handbook, p. 96. Springer, Heidelberg (2011)Google Scholar
  2. 2.
    Virtual Classroom Software: Blackboard Collaborate.
  3. 3.
  4. 4.
    Schoology, Learning Management System: LMS.
  5. 5.
  6. 6.
    Mitrovic, A., Suraweera, P., Martin, B., Zakharov, K., Milik, N., Holland, J.: Authoring constraint-based tutors in ASPIRE. In: Ikeda, M., Ashley, K., Chan, T.-W. (eds.) ITS 2006, LNCS, vol. 4053, pp. 41–50 (2006)Google Scholar
  7. 7.
    Litman, D.J., Silliman, S.: Itspoke: an intelligent tutoring spoken dialogue system. In: Proceedings of the Human HLT/NAACL, Boston, MA, May 2004Google Scholar
  8. 8.
    Matsuda, N., Vanlehn, K.: Advanced geometry tutor: an intelligent tutor that teaches proof-writing with construction. In: Looi, C.-K., McCalla, G., Bredeweg, B., Breuker, J. (eds.) Proceedings of the 12th International Conference on Artificial Intelligence in Education AIED 2005, pp. 443–450. IOS Press, Amsterdam (2005)Google Scholar
  9. 9.
    Antona, M., Margetis, G., Ntoa, S., Leonidis, A., Korozi, M., Paparoulis, G., Stephanidis, C.: Ambient Intelligence in the classroom: an augmented school desk. World Acad. Sci. Eng. Technol. 66, 594–598 (2010)Google Scholar
  10. 10.
    José-Guillermo, H.-C., Benítez-Guerrero, E., Mezura-Godoy, C.: Ambientes inteligentes en contextos educativos: modelo y arquitectura. Res. Comput. Sci. 77, 55–65 (2014)Google Scholar
  11. 11.
    Arturo, O.D., Alberto, J.J.: Ambiente inteligente distribuido de aprendizaje: integracion de ITS y CLSC por medio de agente pedagogicos. In: Revista de la Escuela de Ingeniería de Antoquia (EIA 2006), pp. 89–104. Antoquia (2006)Google Scholar
  12. 12.
    Rivero, D., Arciniega, S., Narváez, L., Puetate, G.C.: Ambientes Inteligente para la Educación: Un modelo conceptual. In: Avances y aplicaciones de sistemas inteligentes y nuevas tecnologías, pp. 117–130. Universidad de Los Andes, Ecuador (2016)Google Scholar
  13. 13.
    Rabie, A., Hagras, R.H., Nawito, M., El Faham, A.: The intelligent classroom: towards an educational ambient intelligence testbed. In: Sixth International Conference on Intelligent Environments (IE), pp. 344–349. IEEE (2010)Google Scholar
  14. 14.
    Farzan, R., Brusilovsly, P.: Social navigation support in a course recommender system. In: Proceedings of the International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems, pp. 91–100. Springer, Berlin (2006)Google Scholar
  15. 15.
    Hummel, H., Van den Berg, B., Berlanga, A., Drachsler, H., Jansenn, J., Nadolski, R., Koper, R.: Combining social-based and information-based approaches for personalised recommendation on sequencing learning activities. Int. J. Learn. Technol. 3(2), 152–168 (2007)CrossRefGoogle Scholar
  16. 16.
    García-Salcines, E., Romero-Morales, C., Ventura-Soto, S., Castro-Lozano, C.: Sistema recomendador colaborativo usando minería de datos distribuida para la mejora continua de cursos e-learning. IEEE-RITA 3(1), 19–30 (2008)Google Scholar
  17. 17.
    Lu, J.: Personalized e-learning material recommender system. In: International Conference on Information Technology for Application, pp. 374–379 (2004)Google Scholar
  18. 18.
    Koper, R.: Increasing learner retention in a simulated learning network using indirect social Interaction. J. Artif. Soc. Soc. Simul. 8(2) (2005)Google Scholar
  19. 19.
    Janssen, J., den Berg, B., Tattersall, C., Hummel, H., Koper, R.: Navigational support in lifelong learning: enhancing effectiveness through indirect social navigation. Interact. Learn. Environ. 15(2), 127–136 (2007)CrossRefGoogle Scholar
  20. 20.
    Heraud, J.-M., France, L., Mille, A.: Pixed: an ITS that guides students with the help of learners’ interaction log. In: International Conference on Intelligent Tutoring Systems, Workshop Analyzing Student Tutor Interaction Logs to Improve Educational Outcomes, Maceio, Brazil, pp. 57–64 (2004)Google Scholar
  21. 21.
    Sørmo, F., Aamodt, A.: Knowledge communication and CBR. In: ECCBR Workshops, pp. 47–60 (2002)Google Scholar
  22. 22.
    Drachsler, H., Hummel, H.G.K., Koper, R.: Personal recommender systems for learners In lifelong learning networks: the requirements, techniques and model. Int. J. Learn. Technol. 3(4), 404–423 (2008)CrossRefGoogle Scholar
  23. 23.
    Ricci, F., Rokach, L., Shapira, B.: Recommender Systems Handbook. Springer, Berlin (2015)Google Scholar
  24. 24.
    Klasna-Milicevic, A., Ivanovic, M., Nanopoulos, A.: Recommender systems in e-learning environments: a survey of the state-of-the-art and possible extensions. Artif. Intell. Rev. 44(4), 571–604 (2015)CrossRefGoogle Scholar
  25. 25.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, Egnlewood Cliffs 25 (1995)Google Scholar
  26. 26.
    IEEE: Learning Object Metadata.
  27. 27.
    L’Allier, J.: Frame of Reference: NETg’s Map to Its Products, Their Structures and Core Beliefs.
  28. 28.
  29. 29.
    Eriksson, H.-E., Penker, M.: Business Modeling with UML, New York (2000)Google Scholar
  30. 30.
    Rivero-Albarrán, D., Barrios-Albornóz, J., Rivas-Echeverría, F.: An evolutionary strategy for transforming the Business Object Model in a Web Services Model. Int. J. Internet Things Web Serv. 1(1), 8–21 (2016)Google Scholar
  31. 31.
    Cohen, W.W.: Integration of heterogeneous databases without common domains using queries based on textual similarity. In: Proceedings of the SIGMOD International Conference Management of Data SIGMOD 1998, pp. 201–212 (1998)Google Scholar
  32. 32.
    Garre, M., Charro, M.: Estimación del esfuerzo de un proyecto software utilizando el criterio MDLEM y componentes normales NDimensionales. Aplicación a un caso práctico. In: Revista de Procesos y Métricas de las Tecnologías de la Información (RPM), 13-24 March 2005, vol. 2, no. 1. Asociación Española de Sistemas de Informáticos (AEMES) (2005). ISSN: 1698 2029Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Dulce Rivero-Albarrán
    • 1
    • 2
  • Francklin Rivas-Echeverria
    • 1
    • 2
  • Laura Guerra
    • 1
  • Brian Arellano
    • 1
  • Stalin Arciniegas
    • 1
  1. 1.Pontificia Universidad Católica del Ecuador, Sede Ibarra. Escuela de IngenieríaIbarraEcuador
  2. 2.Facultad de Ingeniería, Escuela de Ingeniería de SistemasUniversidad de Los AndesMéridaVenezuela

Personalised recommendations