Competitive Intelligence Using Domain Ontologies on Facebook of Telecommunications Companies of Peru

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 721)

Abstract

Telecommunications companies (TELCOs) in Peru offers promotions almost daily in social networks, mainly Facebook. There’s a lot of data in Facebook, written in natural language without meaning for computer, that TELCOs are not using to have Competitive Intelligence (CI). CI is a process that identifies decision makers information needs about competitors, collects data from public sources, gives meaning and analyze data to answer information needs and communicates results to decision makers.

This paper proposes and implements a CI process for TELCOs that includes collection of 15,634 posts and 1,411,921 comments from Facebook, the creation process of TELCO ontology with 119 words and 27 concepts and classification of posts, a Web application to perform semantic search of posts and compare the results by TELCO including positive and negative comments to have CI for decision making. The proposed CI process can be used in other contexts with several competitors with equivalent services.

Keywords

Competitive intelligence Ontology Decision maker Social network Facebook Natural language processing Sentiment analysis 

References

  1. 1.
    Gógova, S.: Inteligencia Competitiva: ¿Espías? ¿Oráculos? ¿Estrategas?. Ediciones Díaz de Santos, España (2015)Google Scholar
  2. 2.
    Arp, R., Smith, B., Spear, A.D.: Building Ontologies with Basic Formal Ontology. The MIT Press, Cambridge, USA (2015)CrossRefGoogle Scholar
  3. 3.
    Abdellaoui, S., Nader, F.: Semantic data warehouse at the heart of competitive intelligence systems: design approach. In: 2015 6th International Conference on Information Systems and Economic Intelligence (SIIE), pp. 141–145. IEEE, Hammamet, Tunisia (2015).  https://doi.org/10.1109/ISEI.2015.7358736
  4. 4.
    Spruit, M., Cepoi, A.: CIRA: a competitive intelligence reference architecture for dynamic solutions. In: 2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K), vol. 1, pp. 249–258. IEEE, Lisbon, Portugal (2015)Google Scholar
  5. 5.
    Chouder, M.L., Chalal, R.: Models and tools support to the competitive intelligence process. In: 2014 4th International Symposium on ISKO-Maghreb: Concepts and Tools for Knowledge Management (ISKO-Maghreb), pp. 1–7. IEEE, Algiers, Algeria (2014).  https://doi.org/10.1109/ISKO-Maghreb.2014.7033466
  6. 6.
    Olszak, C.M.: An overview of information tools and technologies for competitive intelligence building: theoretical approach. Issues Informing Sci. Inf. Technol. 11, 139–153 (2014)CrossRefGoogle Scholar
  7. 7.
    Chen, Y., Jin, P., Yue, L.: Ontology-driven extraction of enterprise competitive intelligence in the Internet. In: 2008 Second International Conference on Future Generation Communication and Networking Symposia, FGCNS 2008, vol. 2, pp. 35–38. IEEE, Sanya, China (2008).  https://doi.org/10.1109/FGCNS.2008.72
  8. 8.
    Li, J., Huang, M., Zhu, X.: An ontology-based mining system for competitive intelligence in neuroscience. In: Zhong, N., Liu, J., Yao, Y., Wu, J., Lu, S., Li, K. (eds.) WImBI 2006. LNCS (LNAI), vol. 4845, pp. 291–304. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-77028-2_17CrossRefGoogle Scholar
  9. 9.
    Arroyo Varela, S.R.: Inteligencia competitiva: Una herramienta clave en la estrategia empresarial. Ediciones Pirámide, Madrid (2005)Google Scholar
  10. 10.
    Muñoz Cañavate, A.: Recursos de información para la inteligencia competitiva: Una guía para la toma de decisiones. Ediciones Trea, Gijón, Asturias (2012)Google Scholar
  11. 11.
    Wongthongtham, P., Abu-Salih, B.: Ontology and trust based data warehouse in new generation of business intelligence: state-of-the-art, challenges, and opportunities. In: 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), pp. 476–483. IEEE, Cambridge, UK (2015).  https://doi.org/10.1109/INDIN.2015.7281780
  12. 12.
    Liu, C., Yang, D., Wang, Y.: Domain ontology and semantic web applications for study of web competitive intelligence analysis system. Int. J. Web Sci. 1(1–2), 99–113 (2011).  https://doi.org/10.1504/IJWS.2011.044083CrossRefGoogle Scholar
  13. 13.
    Dai, Y., Kakkonen, T., Sutinen, E.: SoMEST: a model for detecting competitive intelligence from social media. In: Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments, pp. 241–248. ACM, Tampere, Finland (2011).  https://doi.org/10.1145/2181037.2181078
  14. 14.
    Hassan, T., Cruz, C., Bertaux, A.: Ontology-based approach for unsupervised and adaptive focused crawling. In: Proceedings of the International Workshop on Semantic Big Data, SBD 2017, p. 2. ACM, Chicago, USA (2017).  https://doi.org/10.1145/3066911.3066912
  15. 15.
    Kimble, C., de Vasconcelos, J.B., Rocha, Á.: Competence management in knowledge intensive organizations using consensual knowledge and ontologies. Inf. Syst. Front. 18(6), 1119–1130 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Escuela de Posgrado, Maestría en InformáticaPontificia Universidad Católica del PerúLimaPeru
  2. 2.Departamento de Ingeniería, Sección de Ingeniería Informática, Grupo de Reconocimiento de Patrones e Inteligencia Artificial AplicadaPontificia Universidad Católica del PerúLimaPeru

Personalised recommendations