Advertisement

Analyzing UAV-Based Remote Sensing and WSN Support for Data Fusion

  • Ramón Alcarria
  • Borja Bordel
  • Miguel Ángel Manso
  • Teresa Iturrioz
  • Marina Pérez
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 721)

Abstract

Recent developments in remote sensing are significantly contributing to exploration and data acquisition through improved efficiency and risk reduction. Unmanned Aerial Vehicles (UAV) are involved in a wide range of remote sensing applications, as they are rapid, efficient and flexible acquisition systems. They represent a valid alternative or a complementary solution to satellite or airborne sensors. Wireless Sensor Networks (WSN), on the other hand, have proliferated significantly in recent years thanks to their timely, cheap and extremely rich data acquisition capacity with respect to other acquisition systems. This paper analyzes current state of the art in UAV-based remote sensing and WSN support for the generation of integrated data. An architecture is proposed for the combination of these technologies and the data acquisition, communication, fusion, and presentation processes are analyzed along with the proposal of future challenges.

Keywords

Wireless Sensor Networks (WSN) Remote sensing Survey Data fusion Unmanned Aerial Vehicles (UAV) 

Notes

Acknowledgments

These results were supported by UPM’s ‘Programa Propio’, and within the framework of the educational innovation project IE1617.1200, funded by UPM in its 2016–2017 call. Also by the Ministry of Economy and Competitiveness through SEMOLA project (TEC2015-68284-R) and the Autonomous Region of Madrid through MOSI-AGIL-CM project (grant P2013/ICE-3019, co-funded by EU Structural Funds FSE and FEDER). Borja Bordel has received funding from the Ministry of Education through the FPU program (grant number FPU15/03977).

References

  1. 1.
    Hartmann, B., Doorley, S., Klemmer, S.R.: Hacking, mashing, gluing: understanding opportunistic design. IEEE Pervasive Comput. 7, 46–54 (2008)CrossRefGoogle Scholar
  2. 2.
    Haghighat, M., Abdel-Mottaleb, M., Alhalabi, W.: Discriminant correlation analysis: real-time feature level fusion for multimodal biometric recognition. IEEE Trans. Inf. Forensics Secur. 11, 1984–1996 (2016)CrossRefGoogle Scholar
  3. 3.
    Sankey, T., Donager, J., McVay, J., Sankey, J.B.: UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA. Remote Sens. Environ. 195, 30–43 (2017)CrossRefGoogle Scholar
  4. 4.
    Loke, S.W.: The internet of flying-things: opportunities and challenges with airborne fog computing and mobile cloud in the clouds (2015)Google Scholar
  5. 5.
    Popescu, D., Ichim, L., Stoican, F.: Unmanned aerial vehicle systems for remote estimation of flooded areas based on complex image processing. Sensors 17, 446 (2017)CrossRefGoogle Scholar
  6. 6.
    Balampanis, F., Maza, I., Ollero, A.: Coastal areas division and coverage with multiple UAVs for remote sensing. Sensors 17, 808 (2017)CrossRefGoogle Scholar
  7. 7.
    Ni, J., Yao, L., Zhang, J., Cao, W., Zhu, Y., Tai, X.: Development of an unmanned aerial vehicle-borne crop-growth monitoring system. Sensors 17, 502 (2017)CrossRefGoogle Scholar
  8. 8.
    DeBell, L., Anderson, K., Brazier, R.E., King, N., Jones, L.: Water resource management at catchment scales using lightweight UAVs: current capabilities and future perspectives. J. Unmanned Veh. Syst. 4, 7–30 (2016)CrossRefGoogle Scholar
  9. 9.
    Deepika, G., Rajapirian, P.: Wireless sensor network in precision agriculture: a survey. In: 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS), pp. 1–4. IEEE (2016)Google Scholar
  10. 10.
    Niedermeier, M., He, X., de Meer, H., Buschmann, C., Hartmann, K., Langmann, B., Koch, M., Fischer, S., Pfisterer, D.: Critical infrastructure surveillance using securewireless sensor networks. J. Sens. Actuator Netw. 4, 336–370 (2015)CrossRefGoogle Scholar
  11. 11.
    Posnicek, T., Kellner, K., Brandl, M.: Wireless sensor network for environmental monitoring with 3G connectivity. Procedia Eng. 87, 524–527 (2014)CrossRefGoogle Scholar
  12. 12.
    Avellar, G., Pereira, G., Pimenta, L., Iscold, P.: Multi-UAV routing for area coverage and remote sensing with minimum time. Sensors 15, 27783–27803 (2015)CrossRefGoogle Scholar
  13. 13.
    Zeng, Y., Zhang, R., Lim, T.J.: Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Commun. Mag. 54, 36–42 (2016)CrossRefGoogle Scholar
  14. 14.
    Mozaffari, M., Saad, W., Bennis, M., Debbah, M.: Unmanned aerial vehicle with underlaid device-to-device communications: performance and tradeoffs. IEEE Trans. Wirel. Commun. 15, 3949–3963 (2016)CrossRefGoogle Scholar
  15. 15.
    Hossein Motlagh, N., Taleb, T., Arouk, O.: Low-altitude unmanned aerial vehicles-based internet of things services: comprehensive survey and future perspectives. IEEE Internet Things J. 3, 899–922 (2016)CrossRefGoogle Scholar
  16. 16.
    Ueno, S., Higuchi, T., Iwama, K.: Collision avoidance control law of a helicopter using information amount feedback. In: 2008 SICE Annual Conference, pp. 2118–2121. IEEE (2008)Google Scholar
  17. 17.
    Choi, S.-C., Sung, N.-M., Park, J.-H., Ahn, I.-Y., Kim, J.: Enabling drone as a service: OneM2M-based UAV/drone management system. In: 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 18–20. IEEE (2017)Google Scholar
  18. 18.
    Gómez-Barrón, J.-P., Manso-Callejo, M.-Á., Alcarria, R., Iturrioz, T.: Volunteered geographic information system design: project and participation guidelines. ISPRS Int. J. Geo Inf. 5, 108 (2016)CrossRefGoogle Scholar
  19. 19.
    Characteristics of unmanned aircraft systems and spectrum requirements to support their safe operation in non-segregated airspace, ITU. Mobile, Radio Determination, Amateur Related Satellite Services. Technical report M.2171. http://www.itu.int/pub/R-REP-M.2171-2009
  20. 20.
    UVS International – Remotely Piloted Systems: Promoting International Cooperation & Coordination. RPAS Related Documents (2017). http://uvs-international.org/
  21. 21.
    Gavan, J., Tapuchi, S.: The potential of High Altitude Platforms (HAPS) for low interference and broadband radio services. In: 2009 5th Asia-Pacific Conference on Environmental Electromagnetics, pp. 17–25. IEEE (2009)Google Scholar
  22. 22.
    Lien, S.-Y., Chen, K.-C., Lin, Y.: Toward ubiquitous massive accesses in 3GPP machine-to-machine communications. IEEE Commun. Mag. 49, 66–74 (2011)CrossRefGoogle Scholar
  23. 23.
    Caroti, G., Piemonte, A.: Kinematic positioning: from mobile mapping systems to unmanned aerial vehicles at Pisa University. In: Cefalo, R., Zieliński, J.B., Barbarella, M. (eds.) New Advanced GNSS and 3D Spatial Techniques. LNGC, pp. 261–270. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-56218-6_21CrossRefGoogle Scholar
  24. 24.
    Hubbard, B., Wang, H., Leasure, M., Ropp, T., Lofton, T., Hubbard, S., Lin, S.: Feasibility study of UAV use for RFID material tracking on construction sites. In: 51st ASC Annual International Conference Proceedings (2015)Google Scholar
  25. 25.
    Harris, M.: Project Skybender: Google’s secretive 5G internet drone tests revealed. https://www.theguardian.com/technology/2016/jan/29/project-skybender-google-drone-tests-internet-spaceport-virgin-galactic
  26. 26.
    Alakbarov, R.G., Pashayev, F.H., Alakbarov, O.R.: Optimal deployment model of cloudlets in mobile Cloud Computing. In: 2017 IEEE 2nd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), pp. 213–217. IEEE (2017)Google Scholar
  27. 27.
    Shariatmadari, H., Ratasuk, R., Iraji, S., Laya, A., Taleb, T., Jäntti, R., Ghosh, A.: Machine-type communications: current status and future perspectives toward 5G systems. IEEE Commun. Mag. 53, 10–17 (2015)CrossRefGoogle Scholar
  28. 28.
    Laliberte, A.S., Herrick, J.E., Rango, A., Winters, C.: Acquisition, orthorectification, and object-based classification of unmanned aerial vehicle (UAV) imagery for rangeland monitoring. Photogramm. Eng. Remote Sens. 76, 661–672 (2010)CrossRefGoogle Scholar
  29. 29.
    Lu, B., He, Y., Liu, H.H.T.: Mapping vegetation biophysical and biochemical properties using unmanned aerial vehicles-acquired imagery. Int. J. Remote Sens. 1–23, 10 August 2017. (Online)Google Scholar
  30. 30.
    Auer, S., Lehmann, J., Hellmann, S.: LinkedGeoData: adding a spatial dimension to the web of data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 731–746. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04930-9_46CrossRefGoogle Scholar
  31. 31.
    Foerster, T., Jirka, S., Stasch, C., Pross, B., Everding, T., Broring, A., Juerrens, E.H.: Integrating human observations and sensor observations – the example of a noise mapping community. In: Proceedings of Workshop “Towards Digital Earth: Search, Discover and Share Geospatial Data 2010” at Future Internet Symposium, Berlin (2010)Google Scholar
  32. 32.
    Al-Zaidi, R., Woods, J., Al-Khalidi, M., Hu, H.: An IOT-enabled system for marine data aquisition and cartography. Trans. Netw. Commun. 5, 53 (2017)Google Scholar
  33. 33.
    Pichler, G., Poveda Lopez, J.A., Picchi, G., Nolan, E., Kastner, M., Stampfer, K., Kühmaier, M.: Comparison of remote sensing based RFID and standard tree marking for timber harvesting. Comput. Electron. Agric. 140, 214–226 (2017)CrossRefGoogle Scholar
  34. 34.
    Szeliski, R.: Image alignment and stitching: a tutorial, Redmond (2004)Google Scholar
  35. 35.
    Pei, Y., Liu, B., Hua, Q., Liu, C., Ji, Y.: An aeromagnetic survey system based on an unmanned autonomous helicopter: development, experiment, and analysis. Int. J. Remote Sens. 38, 3068–3083 (2017)Google Scholar
  36. 36.
    Boulos, M., Resch, B., Crowley, D.N., Breslin, J.G., Sohn, G., Burtner, R., Pike, W.A., Jezierski, E., Chuang, K.-Y.S., Sheth, A.: Crowdsourcing, citizen sensing and sensor web technologies for public and environmental health surveillance and crisis management: trends, OGC standards and application examples. Int. J. Health Geogr. 3, 1 (2004)CrossRefGoogle Scholar
  37. 37.
    Rouse, L.J., Bergeron, S.J., Harris, T.M.: Participating in the geospatial web: collaborative mapping, social networks and participatory GIS. In: Scharl, A., Tochtermann, K. (eds.) The Geospatial Web. Advanced Information and Knowledge Processing, pp. 153–158. Springer, London (2009).  https://doi.org/10.1007/978-1-84628-827-2_14Google Scholar
  38. 38.
    Meo, R., Roglia, E., Bottino, A.: The exploitation of data from remote and human sensors for environment monitoring in the SMAT project. Sensors 12, 17504–17535 (2012)CrossRefGoogle Scholar
  39. 39.
    Yang, L., Qi, J., Jizhong, X., Yong, X.: A literature review of UAV 3D path planning. In: Proceeding of the 11th World Congress on Intelligent Control and Automation, pp. 2376–2381. IEEE (2014)Google Scholar
  40. 40.
    A proposal to create common rules for operating drones in Europe, EASA: European Aviation Safety Agency. https://www.easa.europa.eu/system/files/dfu/205933-01-EASA_Summary of the ANPA.pdf
  41. 41.
    Unmanned Aircraft Systems, Federal Aviation Administration. https://www.faa.gov/uas/
  42. 42.
    Manual for Airspace Planning, European Organisation for the Safety of Air Navigation. https://www.icao.int/safety/pbn/Documentation/EUROCONTROL

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ramón Alcarria
    • 1
  • Borja Bordel
    • 2
  • Miguel Ángel Manso
    • 1
  • Teresa Iturrioz
    • 1
  • Marina Pérez
    • 3
  1. 1.Department of Topographic Engineering and CartographyUniversidad Politécnica de MadridMadridSpain
  2. 2.Department of Telematics Systems EngineeringUniversidad Politécnica de MadridMadridSpain
  3. 3.Department of Physical ElectronicsUniversidad Politécnica de MadridMadridSpain

Personalised recommendations