Interactive System for Hands and Wrist Rehabilitation

  • Marco Pilatásig
  • Jenny Tigse
  • Alexandra Chuquitarco
  • Pablo Pilatásig
  • Edwin Pruna
  • Andrés Acurio
  • Jorge Buele
  • Ivón Escobar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 721)

Abstract

An Interactive system is presented for the rehabilitation of hands and wrists using the leap motion device and the Unity3D software. Two applications were created with several movements were by programming such as flexion, wrist extension, pronation, supination and adduction. Through the interfaces the users have immersion and perform the exercises correctly because at the end of the game a visual and audible feedback is presented. Five people used the system and then the SEQ usability test was applied with results of 59.6. This indicates that the system has a good acceptance and can be used for rehabilitation.

Keywords

LeapMotion Unity Virtual reality Test SEQ 

References

  1. 1.
    Garg, H.T., Choudhury, Kumar, P., Sabitha, S.: Comparison between significance of usability and security in HCI. In: 3rd International Conference on Computational Intelligence & Communication Technology (CICT), pp. 1–4, Ghaziabad (2017)Google Scholar
  2. 2.
    Xu, Z., Qiu, X., He, J.: A novel multimedia human-computer interaction (HCI) system based on Kinect and depth image understanding. In: International Conference on Inventive Computation Technologies (ICICT), pp. 1–6, Coimbatore (2016)Google Scholar
  3. 3.
    Safaei, A., Wu, Q.M.J.: Evaluating 3D hand motion with a softkinetic camera. In: IEEE International Conference on Multimedia Big Data, pp. 290–291, Beijing (2015)Google Scholar
  4. 4.
    Zhi-heng, W., Jiang-tao, C., Jin-guo, L., Zi-qi, Z.: Design of human-computer interaction control system based on hand-gesture recognition. In: 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 143–147, Hefei (2017)Google Scholar
  5. 5.
    Zhu, H., You, Q., Chen, W.: Target-focused video stabilization for human computer interaction. In: 29th Chinese Control and Decision Conference (CCDC), pp. 7688–7693, Chongqing (2017)Google Scholar
  6. 6.
    Liou, J.C., Lin, W.C., Kong, Y.Y.: Multi-channel module of heart rate and electromyography clinical human-computer interaction system. In: IEEE International Conference on Consumer Electronics - Taiwan (ICCE-TW), pp. 97–98, Taipei (2017)Google Scholar
  7. 7.
    Agrawal, R., Gupta, N.: Real time hand gesture recognition for human computer interaction. In: IEEE 6th International Conference on Advanced Computing (IACC), pp. 470–475, Bhimavaram (2016)Google Scholar
  8. 8.
    Guo, J., Li, N., Guo, S., Gao, J.: A LabVIEW-based human-computer interaction system for the exoskeleton hand rehabilitation robot. In: IEEE International Conference on Mechatronics and Automation (ICMA), pp. 571–576, Takamatsu (2017)Google Scholar
  9. 9.
    Wang, B., McDaid, A., Biglari-Abhari, M., Aw, K.C.: Design and development of a glove for post-stroke hand rehabilitation. In: IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, pp. 1047–1051, Germany (2017)Google Scholar
  10. 10.
    Ganeson, S., Ambar, R., Jamil, M.M.A.: Design of a low-cost instrumented glove for hand rehabilitation monitoring system. In: 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pp. 189–192, Batu Ferringhi (2016)Google Scholar
  11. 11.
    Sayilgan, M.E., Kaplanoğlu, E., Atasoy, A., Kuchimov, S., Özkan, M.: Hand rehabilitation and prosthesis training interface. In: 19th National Biomedical Engineering Meeting (BIYOMUT), pp. 1–6. Istanbul (2015)Google Scholar
  12. 12.
    Rodriguez, A., Li, X., Yu, W.: A 3-D hand rehabilitation system using haptic device. In: 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–6, Mexico City (2015)Google Scholar
  13. 13.
    Fitzgerald, D., Kelly, D., Ward, T., Markham, C., Caulfield, B.: Usability evaluation of e-motion: a virtual rehabilitation system designed to demonstrate, instruct and monitor a therapeutic exercise programme. In: Virtual Rehabilitation, pp. 144–149 (2008)Google Scholar
  14. 14.
    Kalawsky, R.S.: VRUSE–a computerised diagnostic tool: for usability evaluation of virtual/synthetic environment systems. Appl. Ergon. 30, 11–25 (1999)CrossRefGoogle Scholar
  15. 15.
    Gil-Gómez, J.A., Gil-Gómez, H., Lozano-Quilis, J.A., Manzano-Hernández, P., Albiol-Pérez, S., Aula-Valero, C.: SEQ: suitability evaluation questionnaire for virtual rehabilitation systems. In: Application in a Virtual Rehabilitation system for Balance Rehabilitation, 2013 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, pp. 335–338, Venice (2013)Google Scholar
  16. 16.
    Pruna, E., Acurio, A., Tigse, J., Escobar, I., Pilatásig, M., Pilatásig, P.: Virtual system for upper limbs rehabilitation in children. In: AVR International Conference on Augmented Reality. Virtual Reality and Computer Graphics, LNCS. Springer, pp. 107–118, Verlag (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Marco Pilatásig
    • 1
  • Jenny Tigse
    • 1
  • Alexandra Chuquitarco
    • 1
  • Pablo Pilatásig
    • 1
  • Edwin Pruna
    • 1
  • Andrés Acurio
    • 1
  • Jorge Buele
    • 1
  • Ivón Escobar
    • 1
  1. 1.Universidad de las Fuerzas Armadas ESPESangolquíEcuador

Personalised recommendations