Advertisement

Interactive System for Monitoring and Control of a Flow Station Using LabVIEW

  • Jorge Buele
  • John Espinoza
  • Marco Pilatásig
  • Franklin Silva
  • Alexandra Chuquitarco
  • Jenny Tigse
  • Jessy Espinosa
  • Lucía Guerrero
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 721)

Abstract

This work delivers the design of an interactive system that allows end user to interact with an intuitive, friendly and efficient way within the process control world. Using Raspberry Pi 3 with a high-level language, a fuzzy control algorithm applied to a flow station is implemented, whose information will be sent in serial form to an interface developed in the LabVIEW software. This interface has three windows, in which you can modify the value of the setpoint, trends views and save historical data for the subsequent processing of such information. This will replace the expensive conventional display screens, with interfaces developed in computer. Besides, it is demonstrated its applicability and ease of communication with low-cost embedded boards, through experimental tests and usability surveys.

Keywords

Interactive system Fuzzy control Raspberry Pi LabVIEW 

References

  1. 1.
    Kuutti, K., Bannon, L.J.: The turn to practice in HCI: towards a research agenda. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, pp. 3543–3552. ACM, New York (2014)Google Scholar
  2. 2.
    Xu, Z., Qiu, X., He, J.: A novel multimedia human-computer interaction (HCI) system based on kinect and depth image understanding. In: International Conference on Inventive Computation Technologies (ICICT), Coimbatore, pp. 1–6. IEEE Press (2017)Google Scholar
  3. 3.
    Heng, S., Yunfeng, D.: Research on cooperative control of human-computer interaction tools with high recognition rate based on neural network. In: 2014 International Conference on Virtual Reality and Visualization (ICVRV), Shenyang, pp. 350–354. IEEE Press (2014)Google Scholar
  4. 4.
    Lindtner, S., Hertz, G.D., Dourish, P.: The design of touch detection HCI system based on Raspberry Pi module. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, pp. 439–448. ACM (2014)Google Scholar
  5. 5.
    Koepfler, J., Stark, L.D., Dourish, P., Sengers, P., Shilton, K.: Values & design in HCI education. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, pp. 127–130. ACM (2014)Google Scholar
  6. 6.
    Pimpalkar, T., Tupe-Waghmare, P.: Emerging sites of HCI innovation: hackerspaces, hardware startups & incubators. In: 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, pp. 305–310. IEEE Press (2016)Google Scholar
  7. 7.
    Pruna, E., Acurio, A., Tigse, J., Escobar, I., Pilatásig, M., Pilatásig, P.: Virtual system for upper limbs rehabilitation in children. In: International Conference on Augmented Reality, Virtual Reality and Computer Graphics, Ugento, pp. 107–118. Springer, Cham (2017)Google Scholar
  8. 8.
    Agrawal, S.K., Chen, X., Kim, M.J., Lee, Y.M., Cho, H.P., Park, G.J.: Feasibility study of robot enhanced mobility in children with cerebral palsy. In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Roma, pp. 1541–1548. IEEE Press (2012)Google Scholar
  9. 9.
    Schüler, T., Drehlmann, S., Kane, F., von Piekartz, H.: Abstract virtual environment for motor rehabilitation of stroke patients with upper limb dysfunction. A pilot study. In: 2013 International Conference on Virtual Rehabilitation (ICVR), Philadelphia, pp. 184–185. IEEE Press (2013)Google Scholar
  10. 10.
    Lancheros-Cuesta, D.J., Marin, M.P., Saenz, Y.V.: Intelligent system (HCI) for people with motor misabilities. In: 2015 10th Iberian Conference on Information Systems and Technologies (CISTI), Aveiro, pp. 1–6. IEEE Press (2015)Google Scholar
  11. 11.
    Montuschi, P., Sanna, A., Lamberti, F., Paravati, G.: Human-computer interaction: present and future trends. Comput. Now 7(9) (2014). IEEE Computer Society. http://www.computer.org/web/computingnow/archive/september2014
  12. 12.
    Pruna, E., Calvopiña, J., Serna, E., Escobar, I., Freire, W., Chang, O.: Implementación de una herramienta didáctica para el diagnóstico de válvulas de control. In: 2016 IEEE Biennial Congress of Argentina (ARGENCON), Buenos Aires, pp. 1–6. IEEE Press (2016)Google Scholar
  13. 13.
    Escobar, I., Pruna, E., Chang, O., Navas, A., Zambrano, J., Ávila, G.: Implementation of a wireless HART training system for upgrading industrial. IEEE Lat. Am. Trans. 14(6), 2663–2668 (2016). IEEE Press, Mexico CityCrossRefGoogle Scholar
  14. 14.
    Oulkar, S., Bamane, R., Gulave, S., Kothawale, P.: Voice controlled home automation using Raspberry Pi 3. Int. J. Recent Innov. Eng. Res. 2(1), 28–32 (2017)Google Scholar
  15. 15.
    Senthilkumar, G., Gopalakrishnan, K., Kumar, V.S.: Embedded image capturing system using Raspberry Pi system. Int. J. Emerg. Trends Technol. Comput. Sci. 3(2), 213–215 (2014)Google Scholar
  16. 16.
    Jindarat, S., Wuttidittachotti, P.: Smart farm monitoring using Raspberry Pi and Arduino. In: 2015 International Conference on Computer, Communications, and Control Technology (I4CT), Kuching, pp. 284–288. IEEE Press (2015)Google Scholar
  17. 17.
    Nolasco, J.J.M., Padilla Medina, J.A.: LabVIEW-based classic, fuzzy and neural controllers algorithm design applied to a level control prototype. IEEE Lat. Am. Trans. 15(6), 1154–1162 (2017). IEEE Press, Mexico CityCrossRefGoogle Scholar
  18. 18.
    Dutu, L.C., Mauris, G., Bolon, P.: A fast and accurate rule-base generation method for Mamdani fuzzy systems. IEEE Trans. Fuzzy Syst. PP(99), 1–19 (2017). IEEE Press, United StatesCrossRefGoogle Scholar
  19. 19.
    Guo, S., Gao, J., Guo, J., Li, N.: The LabVIEW-based control system for the upper limb rehabilitation robot. In: 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, pp. 1732–1737. IEEE Press (2017)Google Scholar
  20. 20.
    Guo, J., Li, N., Gao, J.: A LabVIEW-based human-computer interaction system for the exoskeleton hand rehabilitation robot. In: 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, pp. 571–576. IEEE Press (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Jorge Buele
    • 1
  • John Espinoza
    • 1
  • Marco Pilatásig
    • 1
  • Franklin Silva
    • 1
  • Alexandra Chuquitarco
    • 1
  • Jenny Tigse
    • 1
  • Jessy Espinosa
    • 1
  • Lucía Guerrero
    • 1
  1. 1.Universidad de las Fuerzas Armadas ESPESangolquíEcuador

Personalised recommendations