Big Data Applications in Cancer Research: A Case Study at the Brazilian National Cancer Institute

  • Antônio Augusto Gonçalves
  • Carlos Henrique Fernandes Martins
  • José Geraldo Pereira Barbosa
  • Sandro Luís Freire de Castro Silva
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 721)


The development of smart devices, Internet of Things (IOT) and cloud computing is generating an expressive increase in the volume of public health data that can be collected from various sources and analyzed in an unprecedented way. The demand for Big Data analysis is increasing progressively. The development of applications that support the continuing evaluation of early detection programs is among the priorities in Brazil’s cancer control. This paper presents the development of a big data application employed on the management, processing and analysis of large-scale Brazilian cancer diseases data, and the benefits for cancer prevention and control derived from its implementation.


Big data Cloud computing Health informatics IOT 


  1. 1.
    McAfee, A., Brynjolfsson, E.: Big data: the management revolution. Harvard Bus. Rev. 90, 60–66, 68 (2012)Google Scholar
  2. 2.
    Waller, M.A., Fawcett, S.E.: Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. J. Bus. Logistics 34(2), 77–84 (2013)CrossRefGoogle Scholar
  3. 3.
    Ward, J.S., Barker, A.: Undefined By Data: A Survey of Big Data Definitions. arXiv:1309.5821 (2013)
  4. 4.
    Leventhal, R.: Trend: big data. Big data analytics: from volume to value. Healthcare Inform. 30(2), 12 (2013)Google Scholar
  5. 5.
    Kiron, D., Shockley, R.: Creating business value with analytics. MIT Sloan Manage. Rev. 53(1), 57–63 (2011)Google Scholar
  6. 6.
    Bizer, C., Boncz, P., Brodie, M.L., Erling, O.: The meaningful use of big data: four perspectives – four challenges. SIGMOD Record 40(4), 56–60 (2011)CrossRefGoogle Scholar
  7. 7.
    Toh, S., Platt, R.: Is size the next big thing in epidemiology? Epidemiology 24, 349–351 (2013)CrossRefGoogle Scholar
  8. 8.
    Miele, S., Shockley, R.: Analytics: the real-world use of big data. IBM Institute for Business Value (2013).
  9. 9.
    Tang, P.C., Ash, J.S., Bates, D.W., Overhage, J.M., Sands, D.Z.: Personal health records: definitions, benefits, and strategies for overcoming barriers to adoption. J. Am. Med. Inform. Assoc. 13, 121–126 (2006)CrossRefGoogle Scholar
  10. 10.
    Wiesner, M., Pfeifer, D.: Health recommender systems: concepts requirements, technical basics and challenges. Int. J. Environ. Res. Public Health 11(3), 2580–2607 (2014)CrossRefGoogle Scholar
  11. 11.
    Huang, T., Lan, L., Fang, X., An, P., Mim, H.J., Wang, F.: Promises and challenges of big data computing in health sciences. Big Data Res. 2, 2–11 (2015)CrossRefGoogle Scholar
  12. 12.
    Giniat, E.: Using business intelligence for competitive advantage. Healthcare Finan. Manage. 65(9), 142, 144, 146 (2011)Google Scholar
  13. 13.
    Chawla, N.V., Davis, D.A.: Bringing big data to personalized healthcare: a patient-centered framework. Journal of General Internal Medicine 28, 660–665 (2013)CrossRefGoogle Scholar
  14. 14.
    Madden, S.: From databases to big data. IEEE Internet Comput. 16(3), 4–6 (2012)CrossRefGoogle Scholar
  15. 15.
    Biesdorf, S., Court, D., Willmott, P.: Big data: what’s your plan. McKinsey Q. 2, 40–51 (2013)Google Scholar
  16. 16.
    Marchand, D.E., Peppard, J.: Why IT fumbles analytics. Harvard Bus. Rev. 91(1–2), 1–9 (2013)Google Scholar
  17. 17.
    Ferguson, R.B.: The big deal about a big data culture and innovation. MIT Sloan Manage. Rev. 1–4, 2012Google Scholar
  18. 18.
    Yin, R.K.: Case Study Research: Design and Methods, 15th edn. Sage, London (2014)Google Scholar
  19. 19.
    Bose, R.: Knowledge management-enabled health care management systems: capabilities, infrastructure, and decision-support. Expert Syst. Appl. 24, 59–71 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Antônio Augusto Gonçalves
    • 1
    • 2
  • Carlos Henrique Fernandes Martins
    • 1
  • José Geraldo Pereira Barbosa
    • 2
  • Sandro Luís Freire de Castro Silva
    • 1
  1. 1.Instituto Nacional do Câncer - COAE Tecnologia da InformaçãoRio de JaneiroBrazil
  2. 2.Universidade Estácio de Sá - MADERio de JaneiroBrazil

Personalised recommendations