ExperTI: A Knowledge Based System for Intelligent Service Desks Using Free Text

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 721)

Abstract

When many users consult service desks simultaneously, these typically saturate. This causes the customer attention to be delayed more than usual. To increase the amount of human agents is a costly process for organizations. All this has motivated the design of a knowledge-based system that automatically assists both customers and human agents at the service desk. Web technology was used to enable clients to communicate with a software agent via chat. Techniques of Natural Language Processing were used for the software agent to understand the customer requests. The domain knowledge used by the software agent to understand customer requests has been codified in an ontology. A rule-based expert system (ES) was designed to perform the diagnostic task. This paper presents a knowledge-based system allowing client to communicate with the service desk through a chat system using free text. Evaluations conducted with users have shown an improvement in the attention of service desks when the software developed is used.

Keywords

Service desks Expert systems Natural language processing Free text Ontologies 

Notes

Acknowledgement

The authors wishes to thank to The National Program of Innovation for Competitiveness and Productivity (Innóvate Perú) (http://www.innovateperu.gob.pe/), who is the government agency that funded this project with INFOBOX LATINOAMERICA SAC Company technology solutions.

References

  1. 1.
    Abraham, D.M., Spangler, W.E., May, J.H.: Expertech: issues in the design and development of an intelligent help desk system. Expert Syst. Appl. 2(4), 305–319 (1991)CrossRefGoogle Scholar
  2. 2.
    Allen, J.F.: Natural language processing. Encyclopedia of Computer Science, pp. 1218–1222. Wiley, Chichester (2003)Google Scholar
  3. 3.
    Amador, L.: Drools Developer’s Cookbook. Packt Publishing Ltd., Birmingham (2012)Google Scholar
  4. 4.
    Bali, M.: Drools JBoss Rules 5.0 Developer’s Guide. Packt Publishing Ltd. (2009)Google Scholar
  5. 5.
    Browne, P.: JBoss Drools Business Rules. Packt Publishing Ltd., Birmingham (2009)Google Scholar
  6. 6.
    Calero, C., Ruiz, F., Piattini, M.: Ontologies for Software Engineering and Software Technology. Springer, Berlin (2006)CrossRefMATHGoogle Scholar
  7. 7.
    De Oliveira, T.B., Nunes, F.B., Voss, G.B., Medina, R.D., De Lima, J.V.: Recommendation system for assisting the management of information technology. In: UBICOMM 2014–8th International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies. pp. 72–79 (2014)Google Scholar
  8. 8.
    Fenner, G., Lima, A., Souza, N.d., Moura, A., Andrade, R.: A system dynamics model for managing service desk capacity. In: IFIP/IEEE International Symposium on Integrated Network Management (IM), pp. 1424–1427 (2015)Google Scholar
  9. 9.
    Foo, S., Hui, S.C., Leong, P.C., Liu, S.: An integrated help desk support for customer services over the world wide web – a case study. Comput. Ind. 41(2), 129–145 (2000)CrossRefGoogle Scholar
  10. 10.
    Giarratano, J., Riley, G.: Expert Systems: Principles and Programming, 4th edn. Course Technology, Reading (2004)Google Scholar
  11. 11.
    González, L.M., Giachetti, R.E., Ramirez, G.: Knowledge management-centric help desk: specification and performance evaluation. Decis. Support Syst. 40(2), 389–405 (2005)CrossRefGoogle Scholar
  12. 12.
    Ho Kang, B., Yoshida, K., Motoda, H., Compton, P.: Help desk system with intelligent interface. Appl. Artif. Intell. 11(7–8), 611–631 (1997)CrossRefGoogle Scholar
  13. 13.
    Jackson, P.: Introduction to Expert Systems. Addison-Wesley Publishing Company, Reading (1986)MATHGoogle Scholar
  14. 14.
    Jan, E.E., Chen, K.Y., Idé, T.: Probabilistic text analytics framework for information technology service desk tickets. In: IFIP/IEEE International Symposium on Integrated Network Management (IM), pp. 870–873 (2015)Google Scholar
  15. 15.
    Jurafsky, D., Martin, J.H.: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Prentice Hall, Upper Saddle River (2000)Google Scholar
  16. 16.
    Liao, S.H.: Expert system methodologies and applications–a decade review from 1995 to 2004. Expert Syst. Appl. 28(1), 93–103 (2005)CrossRefGoogle Scholar
  17. 17.
    Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (1999)MATHGoogle Scholar
  18. 18.
    Merilinna, J.: A mechanism to enable spatial reasoning in JBoss drools. In: 2014 International Conference on Industrial Automation, Information and Communications Technology (IAICT), pp. 135–140, August 2014Google Scholar
  19. 19.
    Nair, M.K., Kakaraddi, S.M., Ramanarayan, K.M., Gopalakrishna, V.: Agent with rule engine: The glue for web service oriented computing applied to network management. In: Proceedings of the 2009 IEEE International Conference on Services Computing, SCC 2009, pp. 528–531, IEEE Computer Society, Washington (2009)Google Scholar
  20. 20.
    Park, J., Lee, H.C., Lee, M.J.: JCOOLS: A toolkit for generating context-aware applications with JCAF and DROOLS. J. Syst. Architect. 59(9), 759–766 (2013)CrossRefGoogle Scholar
  21. 21.
    Proctor, M.: Drools: a rule engine for complex event processing. In: Applications of Graph Transformations with Industrial Relevance, pp. 2–2. Springer, Heidelberg (2012)Google Scholar
  22. 22.
    Proctor, M., Neale, M., Lin, P., Frandsen, M.: Drools Documentation. JBoss.org, Technical Report (2008)Google Scholar
  23. 23.
    Shi, J., Qiao, Y., Wang, H.: Visualizing inference process of a rule engine. In: Proceedings of the 2011 Visual Information Communication - International Symposium, VINCI 2011, pp. 10:1–10:9. ACM, New York (2011)Google Scholar
  24. 24.
    Sottara, D., Mello, P., Sartori, C., Fry, E.: Enhancing a production rule engine with predictive models using PMML. In: Proceedings of the 2011 Workshop on Predictive Markup Language Modeling, PMML 2011, pp. 39–47. ACM, New York (2011)Google Scholar
  25. 25.
    Staab, S., Studer, R.: Handbook on Ontologies. Springer, Heidelberg (2010)MATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Alejandro Bello
    • 1
  • Andrés Melgar
    • 1
    • 2
  • Daniel Pizarro
    • 3
  1. 1.Sección de Ingeniería Informática, Departamento de IngenieríaPontificia Universidad Católica del PerúLimaPeru
  2. 2.Grupo de Reconocimiento de Patrones e Inteligencia Artificial AplicadaPontificia Universidad Católica del PerúLimaPeru
  3. 3.Infobox Latinoamérica SACLimaPeru

Personalised recommendations