Advertisement

ECOPPA: Extensible Context Ontology for Persuasive Physical-Activity Applications

  • Mohamad Hoda
  • Valeh Montaghami
  • Hussein Al Osman
  • Abdulmotaleb El Saddik
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 721)

Abstract

Throughout the last decade, there has been a dramatic decline in daily physical activity among individuals which results in numerous severe health issues, including obesity, cardiovascular diseases, and high blood pressure. Pervasive applications that promote health living present a promising approach for the reduction or prevention of these health ailements. Context-awareness plays an important role in the development of these technologies. Context-aware systems can adapt to the changing context in order to better serve their users. In this paper, we propose the Extensible Context Ontology for Persuasive Physical-Activity Applications (ECOPPA), a formal context modeling scheme for applications that promote physical activity.

Keywords

Context modeling Ontologies Pervasive computing Persuasive technologies 

References

  1. 1.
    Manson, J.E., Skerrett, P.J., Greenland, P., VanItallie, T.B.: The escalating pandemics of obesity and sedentary lifestyle: a call to action for clinicians. Arch. Intern. Med. 164, 249–258 (2004)CrossRefGoogle Scholar
  2. 2.
    Deckelbaum, R.J., Williams, C.L.: Childhood obesity: the health issue. Obes. Res. 9, 239S–243S (2001)CrossRefGoogle Scholar
  3. 3.
    Bielik, P., Tomlein, M., Krátky, P., Mitrík, Š., Barla, M., Bieliková, M.: Move2Play: an innovative approach to encouraging people to be more physically active. In: Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium, pp. 61–70. ACM (2012)Google Scholar
  4. 4.
    Toscos, T., Faber, A., An, S., Gandhi, M.P.: Chick clique: persuasive technology to motivate teenage girls to exercise. In: CHI 2006 extended abstracts on Human factors in computing systems, pp. 1873–1878. ACM (2006)Google Scholar
  5. 5.
    Maitland, J., Sherwood, S., Barkhuus, L., Anderson, I., Hall, M., Brown, B., Chalmers, M., Muller, H.: Increasing the awareness of daily activity levels with pervasive computing. In: 2006 Pervasive Health Conference and Workshops, pp. 1–9. IEEE (2006)Google Scholar
  6. 6.
    Finin, T., Joshi, A., Kagal, L., Ratsimore, O., Korolev, V., Chen, H.: Information agents for mobile and embedded devices. In: International Workshop on Cooperative Information Agents, pp. 264–286. Springer (2001)Google Scholar
  7. 7.
    Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: Workshop Proceedings (2004)Google Scholar
  8. 8.
    Chen, G., Kotz, D.: A survey of context-aware mobile computing research. Technical Report TR2000-381, Department of Computer Science, Dartmouth College (2000)Google Scholar
  9. 9.
    Chen, H., Perich, F., Finin, T., Joshi, A.: SOUPA: standard ontology for ubiquitous and pervasive applications. In: The First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, MOBIQUITOUS 2004, pp. 258–267. IEEE (2004)Google Scholar
  10. 10.
    Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing environments. Knowl. Eng. Rev. 18, 197–207 (2003)CrossRefGoogle Scholar
  11. 11.
    Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K.: Ontology based context modeling and reasoning using OWL. In: Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops, pp. 18–22. IEEE (2004)Google Scholar
  12. 12.
    Preuveneers, D., Van den Bergh, J., Wagelaar, D., Georges, A., Rigole, P., Clerckx, T., Berbers, Y., Coninx, K., Jonckers, V., De Bosschere, K.: Towards an extensible context ontology for ambient intelligence. In: European Symposium on Ambient Intelligence, pp. 148–159. Springer (2004)Google Scholar
  13. 13.
    Oinas-Kukkonen, H., Harjumaa, M.: Persuasive systems design: key issues, process model, and system features. Commun. Assoc. Inf. Syst. 24, 28 (2009)Google Scholar
  14. 14.
    Xu, Y., Poole, E.S., Miller, A.D., Eiriksdottir, E., Kestranek, D., Catrambone, R., Mynatt, E.D.: This is not a one-horse race: understanding player types in multiplayer pervasive health games for youth. In: Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work, pp. 843–852. ACM (2012)Google Scholar
  15. 15.
    Foster, D., Linehan, C., Kirman, B., Lawson, S., James, G.: Motivating physical activity at work: using persuasive social media for competitive step counting. In: Proceedings of the 14th International Academic MindTrek Conference: Envisioning Future Media Environments, pp. 111–116. ACM (Year)Google Scholar
  16. 16.
    Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T.: OWL-S: semantic markup for web services. W3C member submission 22, 2007–2004 (2004)Google Scholar
  17. 17.
  18. 18.
    Kimble, C., de Vasconcelos, J.B., Rocha, Á.: Competence management in knowledge intensive organizations using consensual knowledge and ontologies. Inf. Syst. Front. 18(6), 1119–1130 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mohamad Hoda
    • 1
  • Valeh Montaghami
    • 1
  • Hussein Al Osman
    • 1
  • Abdulmotaleb El Saddik
    • 1
  1. 1.MCRLab, School of Electrical and Computer ScienceUniversity of OttawaOttawaCanada

Personalised recommendations