Advertisement

Method for Emotion Corpus Validation from the Consensual Identification of Patterns in Alzheimer’s Patients

  • Pablo Gómez
  • Alexandra González-Eras
  • Pablo Torres-Carrión
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 721)

Abstract

The present research proposes a method for the construction of a corpus for the early detection of Alzheimer’s, by identifying basic patterns of emotions on video, from the collection of patient information in the form of videos, analysis and identification of emotions based on facial expressions and finally validation by two statistical measures: weighted Kappa and Kappa. Applying the method on a corpus of 40 videos, an average score of 0.60 obtained in the Kappa index and 0.67 in the weighted Kappa index, which indicates a good agreement among the observers, and provides encouraging results for the use of the corpus in automatic learning, on the patterns of emotions that allow the detection of Alzheimer’s disease.

Keywords

Emotion analysis Alzheimer’s disease Kappa index Weighted Kappa index Alzheimer’s detection 

References

  1. 1.
  2. 2.
    Herrero-Zazo, M., Segura-Bedmar, I., Martínez, P., Declerck, T.: The DDI corpus: an annotated corpus with pharmacological substances and drug–drug interactions. J. Biomed. Inf. 46(5), 914–920 (2013)CrossRefGoogle Scholar
  3. 3.
    Kim, S.N., Martinez, D., Cavedon, L., Yencken, L.: Automatic classification of sentences to support evidence based medicine. BMC Bioinform. 12(2), 1 (2011)Google Scholar
  4. 4.
    Narváez, M.: Análisis y reconocimiento de la expresión facial de la emoción en video de personas con demencia. http://dspace.utpl.edu.ec/handle/123456789/15600
  5. 5.
    McCowan, I.A., Moore, D.C., Nguyen, A.N., Bowman, R.V., Clarke, B.E., Duhig, E.E., Fry, M.J.: Collection of cáncer stage data by classifying free-text medical reports. J. Am. Med. Inf. Assoc. 14(6), 736–745 (2007)CrossRefGoogle Scholar
  6. 6.
    Folstein, M., Folstein, S., McHugh, P.: A practical state method for. J. Psychiatr. Res. 12, 189–198 (1975)CrossRefGoogle Scholar
  7. 7.
    Ekman, P., Friesen, W.V.: Facial Action Coding System. Consulting Psychologists Press, Palo Alto (1977)Google Scholar
  8. 8.
    Cohen, J.: A coefficient of agreement for nominal scale. Educ. Psychol. Meas. 20, 37–46 (1960)CrossRefGoogle Scholar
  9. 9.
    Cohen, J.: Weighted Kappa: nominal scale agreement provision for scaled disagreement or partial credit. Psychol. Bull. 70(4), 213 (1968)CrossRefGoogle Scholar
  10. 10.
    Ruiz, A., Morillo, L.: Epidemiologia clínica aplicada: Investigación clínica aplicada. In: Bogotá: Médica Internacional (2004)Google Scholar
  11. 11.
    Díaz, I., Sidorov, G., Suárez, S. (n.d.): Creación y evaluación de un diccionario marcado con emociones y ponderado para el español (2004)Google Scholar
  12. 12.
    Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33(1), 159–174 (1977).  https://doi.org/10.2307/2529310CrossRefzbMATHGoogle Scholar
  13. 13.
    Bravo, S., Bravo, R.S.: Técnicas de investigación social: teoría y ejercicios. Thomson (2003)Google Scholar
  14. 14.
    Ekman, P., Friesen, W.V.: Unmasking the Face: A Guide to Recognizing Emotions from Facial Clues. Malor Books, Cambridge (2003)Google Scholar
  15. 15.
    Manning, C.D., Hinrich, S.: Foundations of statistical Natural Language Processing. MIT Press, Cambridge (1999)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Universidad Técnica Particular de Loja, San Cayetano Alto LojaLojaEcuador

Personalised recommendations