Skip to main content

On Monte Carlo and Quasi-Monte Carlo for Matrix Computations

  • Conference paper
  • First Online:
Book cover Large-Scale Scientific Computing (LSSC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10665))

Included in the following conference series:

Abstract

This paper focuses on minimizing further the communications in Monte Carlo methods for Linear Algebra and thus improving the overall performance. The focus is on producing set of small number of covering Markov chains which are much longer that the usually produced ones. This approach allows a very efficient communication pattern that enables to transmit the sampled portion of the matrix in parallel case. The approach is further applied to quasi-Monte Carlo. A comparison of the efficiency of the new approach in case of Sparse Approximate Matrix Inversion and hybrid Monte Carlo and quasi-Monte Carlo methods for solving Systems of Linear Algebraic Equations is carried out. Experimental results showing the efficiency of our approach on a set of test matrices are presented. The numerical experiments have been executed on the MareNostrum III supercomputer at the Barcelona Supercomputing Center (BSC) and on the Avitohol supercomputer at the Institute of Information and Communication Technologies (IICT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.open-mpi.org/.

  2. 2.

    www.paralution.com/.

References

  1. Golub, G., Loan, C.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  2. Straßburg, J., Alexandrov, V.N.: Enhancing Monte Carlo preconditioning methods for matrix computations. In: Proceedings ICCS 2014, pp. 1580–1589 (2014)

    Google Scholar 

  3. Alexandrov, V.N., Esquivel-Flores, O.A.: Towards Monte Carlo preconditioning approach and hybrid Monte Carlo algorithms for matrix computations. CMA 70(11), 2709–2718 (2015)

    MathSciNet  Google Scholar 

  4. Carpentieri, B., Duff, I., Giraud, L.: Some sparse pattern selection strategies for robust Frobenius norm minimization preconditioners in electromagnetism. Numer. Linear Algebra Appl. 7, 667–685 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carpentieri, B., Duff, I., Giraud, L.: Experiments with sparse preconditioning of dense problems from electromagnetic applications, CERFACS, Toulouse, France. Technical report (2000)

    Google Scholar 

  6. Alléon, G., Benzi, M., Giraud, L.: Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics. Num. Algorithms 16(1), 1–15 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Evans, T., Hamilton, S., Joubert, W., Engelmann, C.: MCREX - Monte Carlo Resilient Exascale Project. http://www.csm.ornl.gov/newsite/documents

  8. Benzi, M., Meyer, C., Tůma, M.: A sparse approximate inverse preconditioner for the conjugate gradient method. SIAM J. Sci. Comput. 17(5), 1135–1149 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huckle, T., Kallischko, A., Roy, A., Sedlacek, M., Weinzierl, T.: An efficient parallel implementation of the MSPAI preconditioner. Parallel Comput. 36(5–6), 273–284 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grote, M., Hagemann, M.: SPAI: SParse Approximate Inverse Preconditioner. Spaidoc. pdf paper in the SPAI, vol. 3, p. 1 (2006)

    Google Scholar 

  11. Huckle, T.: Factorized sparse approximate inverses for preconditioning. J. Supercomput. 25(2), 109–117 (2003)

    Article  MATH  Google Scholar 

  12. Strassburg, J., Alexandrov, V.: On scalability behaviour of Monte Carlo sparse approximate inverse for matrix computations. In: Proceedings of the ScalA 2013 Workshop, Article no. 6. ACM (2013)

    Google Scholar 

  13. Vajargah, B.F.: A new algorithm with maximal rate convergence to obtain inverse matrix. Appl. Math. Comput. 191(1), 280–286 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Hoemmen, M., Vuduc, R., Nishtala, R.: BeBOP sparse matrix converter. University of California at Berkeley (2011)

    Google Scholar 

  15. Boisvert, R.F., Pozo, R., Remington, K., Barrett, R.F., Dongarra, J.J.: Matrix market: a web resource for test matrix collections. In: Boisvert, R.F. (ed.) QNS 1997. IFIPAICT, pp. 125–137. Springer, Boston (1997). https://doi.org/10.1007/978-1-5041-2940-4_9

    Chapter  Google Scholar 

  16. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. (TOMS) 38(1), 1 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Alexandrov, V., Esquivel-Flores, O., Ivanovska, S., Karaivanova, A.: On the preconditioned Quasi-Monte Carlo algorithm for matrix computations. In: Lirkov, I., Margenov, S.D., Waśniewski, J. (eds.) LSSC 2015. LNCS, vol. 9374, pp. 163–171. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26520-9_17

    Chapter  Google Scholar 

  18. Karaivanova, A.: Quasi-Monte Carlo methods for some linear algebra problems. Convergence and complexity. Serdica J. Comput. 4, 57–72 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Atanassov, E., Gurov, T., Karaivanova, A., Ivanovska, S., Durchova, M., Dimitrov, D.: On the parallelization approaches for Intel MIC architecture. In: AIP Conference Proceedings, vol. 1773, p. 070001 (2016). https://doi.org/10.1063/1.4964983

Download references

Acknowledgments

The work of the authors (V.A., D.D., and O.E-F.) is supported by Severo Ochoa program of excellence, Spain. The work of the authors (A.K. and T.G.) is supported by the NSF of Bulgaria under Grant DFNI-I02/8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneta Karaivanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alexandrov, V., Davila, D., Esquivel-Flores, O., Karaivanova, A., Gurov, T., Atanassov, E. (2018). On Monte Carlo and Quasi-Monte Carlo for Matrix Computations. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2017. Lecture Notes in Computer Science(), vol 10665. Springer, Cham. https://doi.org/10.1007/978-3-319-73441-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73441-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73440-8

  • Online ISBN: 978-3-319-73441-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics