Skip to main content

Spectral Mimetic Least-Squares Method for Div-curl Systems

  • Conference paper
  • First Online:
Large-Scale Scientific Computing (LSSC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10665))

Included in the following conference series:

  • 1269 Accesses

Abstract

In this paper the spectral mimetic least-squares method is applied to a two-dimensional div-curl system. A test problem is solved on orthogonal and curvilinear meshes and both h- and p-convergence results are presented. The resulting solutions will be pointwise divergence-free for these test problems. For \(N>1\) optimal convergence rates on an orthogonal and a curvilinear mesh are observed. For \(N=1\) the method does not converge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bochev, P.B., Gerritsma, M.I.: A spectral mimetic least-squares method. Comput. Math. Appl. 68, 1480–1502 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bochev, P.B., Gunzburger, M.D.: Least-Squares Finite Element Methods. Spinger, New York (2009). https://doi.org/10.1007/b13382

    MATH  Google Scholar 

  3. Bochev, P.B., Peterson, K., Siefert, C.: Analysis and computation of compatible least-squares methods for div-curl systems. SIAM J. Numer. Anal. 49(1), 159–181 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boulmezaoud, T.Z., Kaliche, K., Kerdid, N.: Explicit div-curl inequalities in bounded and unbounded domains of \(\mathbb{R}^3\). Ann. Univ. Ferrara 63(2), 249–276 (2017). https://doi.org/10.1007/s11565-016-0266-7

    Article  MathSciNet  Google Scholar 

  5. Bramble, J.H., Pasciak, J.E.: A new approximation technique for div-curl systems. Math. Comput. 73(248), 1739–1762 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gerritsma, M.: Edge functions for spectral element methods. In: Hesthaven, J., Rønquist, E. (eds.) Spectral and High Order Methods for Partial Differential Equations. LNCS, pp. 199–208. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-15337-2_17

    Chapter  Google Scholar 

  7. Gerritsma, M., Bouman, M., Palha, A.: Least-squares spectral element method on a staggered grid. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2009. LNCS, vol. 5910, pp. 653–661. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12535-5_78

    Chapter  Google Scholar 

  8. Jiang, B.-N.: The Least-Squares Finite Element Method. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-662-03740-9

    Book  MATH  Google Scholar 

  9. Nicolaides, R.A.: Direct discretization of planar div-curl problems. SIAM J. Numer. Anal. 29(1), 32–56 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nicolaides, R.A., Wang, D.-Q.: A higher-order covolume method for planar div-curl problems. Int. J. Numer. Meth. Fluid 31, 299–308 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nicolaides, R.A., Wu, X.: Covolume solutions of three-dimensional div-curl equations. SIAM J. Numer. Aanl. 34(6), 2195–2203 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Palha, A., Gerritsma, M.: Mimetic least-squares spectral/hp finite element method for the poisson equation. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2009. LNCS, vol. 5910, pp. 662–670. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12535-5_79

    Chapter  Google Scholar 

  13. Palha, A., Rebelo, P.P., Hiemstra, R., Kreeft, J., Gerritsma, M.I.: Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms. J. Comput. Phys. 257, 1394–1422 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Palha, A., Gerritsma, M.I.: Spectral mimetic least-squares method for curl-curl problems. In: Lirkov, I., Margenov, S. (eds.) LSSC 2017. LNCS, vol. 10665, pp. 119–127. Springer, Cham (2017)

    Google Scholar 

Download references

Acknowledgements

The authors want to thank the reviewers for the valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Gerritsma .

Editor information

Editors and Affiliations

Appendices

A Weighted Sobolev Spaces

Weighted Sobolev spaces are discussed in [2, Appendix A]. The space \(H_0(\nabla \times ,\varvec{\varTheta }_1,\varOmega )\) is the Hilbert space of vector-valued functions

$$\begin{aligned} H_0&(\nabla \times ,\varvec{\varTheta }_1,\varOmega ) := \\&\left\{ \varvec{u} \in [ L^2(\varvec{\varTheta }_1,\varOmega )]^d\,\big | \, \nabla \times \varvec{u} \in [ L^2(\varvec{\varTheta }_2,\varOmega )]^d \; \text{ and } \; \varvec{u} \times \varvec{n}=0 \text{ along } \partial \varOmega \, \right\} , \nonumber \end{aligned}$$
(10)

where

$$\begin{aligned} \varvec{u},\varvec{v} \in [ L^2(\varvec{\varTheta },\varOmega ) ]^d \quad (\varvec{u},\varvec{v})_{0,\varOmega ,\varvec{\varTheta }} = \int _{\varOmega } \varvec{u} \cdot \varvec{\varTheta } \cdot \varvec{v} \, \mathrm {d}\varOmega \, \end{aligned}$$

and associated norm

$$\begin{aligned} \Vert \varvec{u} \Vert _{0,\varOmega ,\varvec{\varTheta }}^2 = (\varvec{u},\varvec{u})_{0,\varOmega ,\varvec{\varTheta }} . \end{aligned}$$

The space \(H(\nabla \cdot , \varOmega ,\varvec{\varTheta }_1^{-1})\) is defined by

$$\begin{aligned} H_0(\nabla \cdot ,\varvec{\varTheta }_1^{-1},\varOmega ) := \left\{ \varvec{u} \in [ L^2(\varvec{\varTheta }_1^{-1},\varOmega )]^d\,\big | \, \nabla \cdot \varvec{u} \in L^2(\varTheta _0^{-1},\varOmega )\, \right\} . \end{aligned}$$
(11)

If \(\varvec{u} \in L^2(\varvec{\varTheta },\varOmega )]^d\), then \(\varvec{\varTheta } \varvec{u} \in L^2(\varvec{\varTheta }^{-1},\varOmega )]^d\), therefore the second equation in (2) therefore equates two functions in \(L^2(\varOmega ,\varvec{\varTheta }_1^{-1})]^d\).

Weighted Sobolev spaces incorporate material parameters in the functional setting, thus allowing for inhomogeneous and anisotropic relations, see for example Remark A.4 in [2, p.542]. If a description in curvilinear coordinates is obtained from a mapping as described in Sect. 4 then the weight functions naturally arise as a consequence of the pullbacks of those maps.

B Three-Dimensional Double DeRham Complex

In (4) the two-dimensional DeRham complex is given. For \(d=3\) the double DeRham setting is given by

figure a

Although the current paper focused on the two-dimensional div-curl system, the three dimensional analogue of (1) is much more challenging, because it constitutes a system of 4 partial differential equations for 3 unknown vector components of \(\varvec{u}\), [11].

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gerritsma, M., Palha, A. (2018). Spectral Mimetic Least-Squares Method for Div-curl Systems. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2017. Lecture Notes in Computer Science(), vol 10665. Springer, Cham. https://doi.org/10.1007/978-3-319-73441-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73441-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73440-8

  • Online ISBN: 978-3-319-73441-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics