Advertisement

Non-mammalian Systems

  • Amandeep KaurEmail author
Chapter
  • 431 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

While most biological investigations are performed using mammalian cells and tissues, non-mammalian systems are also commonly studied. Studying such systems essentially involves the use of simple animals models with striking similarities to mammalian systems, such as zebrafish (Danio rerio) for developmental biology [1], Drosophila for genetics [2] and C. Elegans for nervous system [3], or investigating facets of health and disease indirectly related to mammals, such as antibiotic resistance resulting from the formation of bacterial biofilms [4]. Whilst there exist a wide array of fluorescent tools for use in mammalian systems [5, 6], not much attention has been paid towards development of new probes or the use of existing probes in non-mammalian systems. The aim of this section of the work was to perform investigations in non-mammalian systems using the fluorescent redox probes developed over the course of this project (Fig. 8.1), highlighting their ability to report on oxidative changes diverse biological systems.

References

  1. 1.
    W. Driever, D. Stemple, A. Schier, L. Solnica-Krezel, Zebrafish: genetic tools for studying vertebrate development. Trends Genet. 10, 152–159 (1994)CrossRefGoogle Scholar
  2. 2.
    J.R. Powell, Progress and Prospects in Evolutionary Biology: The Drosophila Model: The Drosophila Model (Oxford University Press, USA, 1997)Google Scholar
  3. 3.
    O. Bloom, Non-mammalian model systems for studying neuro-immune interactions after spinal cord injury. Exp. Neurol. 258, 130–140 (2014)CrossRefGoogle Scholar
  4. 4.
    G.G. Anderson, G.A. O’Toole, Bacterial Biofilms, Chapter Innate and (85–105) (Springer, Heidelberg, 2008)Google Scholar
  5. 5.
    X. Li, X. Gao, W. Shi, H. Ma, Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem. Rev. 114, 590–659 (2013)CrossRefGoogle Scholar
  6. 6.
    Z. Guo, S. Park, J. Yoon, I. Shin, Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem. Soc. Rev. 43, 16–29 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Brenner, The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974)Google Scholar
  8. 8.
    E.K. Marsh, R.C. May, Caenorhabditis elegans, a model organism for investigating immunity. Appl. Environ. Microbiol. 78, 2075–2081 (2012)CrossRefGoogle Scholar
  9. 9.
    M.C.K. Leung, P.L. Williams, A. Benedetto, C. Au, K.J. Helmcke, M. Aschner, J.N. Meyer, Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol. Sci. 106, 5–28 (2008)CrossRefGoogle Scholar
  10. 10.
    L. Zhang, L. Li, L. Ban, W. An, S. Liu, X. Li, B. Xue, Y. Xu, Effect of sodium azide on mitochondrial membrane potential in SH-SY5Y human neuroblastoma cells. Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae 22, 436–439 (2000)Google Scholar
  11. 11.
    R.J. Martin, A.P. Robertson, S.K. Buxton, R.N. Beech, C.L. Charvet, C. Neveu, Levamisole receptors: a second awakening. Trends Parasitol. 28, 289–296 (2012)CrossRefGoogle Scholar
  12. 12.
    J.M. Van Raamsdonk, S. Hekimi, Reactive oxygen species and aging in caenorhabditis elegans: causal or casual relationship? Antioxid. Redox Signal. 13, 1911–1953 (2010)CrossRefGoogle Scholar
  13. 13.
    R. Baumeister, E. Schaffitzel, M. Hertweck, Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. J. Endocrinol. 190, 191–202 (2006)CrossRefGoogle Scholar
  14. 14.
    M. Markaki, N. Tavernarakis, Modeling human diseases in Caenorhabditis elegans. Biotechnol. J. 5, 1261–1276 (2010)CrossRefGoogle Scholar
  15. 15.
    M. Rodriguez, L.B. Snoek, M. De Bono, J.E. Kammenga, Worms under stress: C. elegans stress response and its relevance to complex human disease and aging. Trends in genetics. TIG 29, 367–374 (2013)CrossRefGoogle Scholar
  16. 16.
    K.I. Zhou, Z. Pincus, F.J. Slack, Longevity and stress in Caenorhabditis elegans. Aging (Albany NY) 3, 733–753 (2011)CrossRefGoogle Scholar
  17. 17.
    C. Portal-Celhay, E.R. Bradley, M.J. Blaser, Control of intestinal bacterial proliferation in regulation of lifespan in Caenorhabditis elegans. BMC Microbiol. 12, 49 (2012)CrossRefGoogle Scholar
  18. 18.
    R.P. Oliveira, J. Porter Abate, K. Dilks, J. Landis, J. Ashraf, C.T. Murphy, T.K. Blackwell, Condition-adapted stress and longevity gene regulation by Caenorhabditis elegans SKN-1/Nrf. Aging Cell 8, 524–541 (2009)CrossRefGoogle Scholar
  19. 19.
    D. Gems, R. Doonan, Antioxidant defense and aging in C. elegans: is the oxidative damage theory of aging wrong? Cell cycle (Georgetown, Tex.) 8, 1681–1687 (2009)Google Scholar
  20. 20.
    M. Kostakioti, M. Hadjifrangiskou, S.J. Hultgren, Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era, in Cold Spring Harbor Perspectives in Medicine, vol. 3 (2013)Google Scholar
  21. 21.
    P. Watnick, R. Kolter, Biofilm, city of microbes. J. Bacteriol. 182, 2675–2679 (2000)CrossRefGoogle Scholar
  22. 22.
    R.M. Donlan, Biofilms: microbial life on surfaces. Emerg. Infect. Dis. J. 8, 881 (2002)CrossRefGoogle Scholar
  23. 23.
    T. Bjarnsholt, The role of bacterial biofilms in chronic infections. APMIS. Supplementum, 1–51 (2013)Google Scholar
  24. 24.
    R.M. Donlan, Biofilm formation: a clinically relevant microbiological process. Clin. Infect. Dis. 33, 1387–1392 (2001)CrossRefGoogle Scholar
  25. 25.
    B.R. Boles, P.K. Singh, Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proc. Natl. Acad. Sci. U.S.A. 105, 12503–12508 (2008)CrossRefGoogle Scholar
  26. 26.
    N. Høiby, T. Bjarnsholt, M. Givskov, S. Molin, O. Ciofu, Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 35, 322–332 (2010)CrossRefGoogle Scholar
  27. 27.
    C.A. Fux, J.W. Costerton, P.S. Stewart, P. Stoodley, Survival strategies of infectious biofilms. Trends Microbiol. 13, 34–40 (2005)CrossRefGoogle Scholar
  28. 28.
    K. Poole, Bacterial stress responses as determinants of antimicrobial resistance. J. Antimicrob. Chemother. 67(9), 2069–2089 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.School of ChemistryUniversity of SydneySydneyAustralia

Personalised recommendations