Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 567 Accesses

Abstract

As outlined in Chap. 6, cultured cells have become an indispensable technology in various branches of life sciences. However, there are some concerns associated with the study of cultured cells.

Parts of the text and figures of this chapter are reprinted with permission from Antioxidants and Redox Signalling, Volume 24, Issue 13, published by Mary Ann Leibert, Inc., New Rochelle, NY., and Organic and Biomolecular Chemistry, Issue 24, with permission from the Royal Society of Chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Kaur, J.M. Dufour, Cell lines. Spermatogenesis 2, 1–5 (2012)

    Google Scholar 

  2. J.R. Masters, G.N. Stacey, Changing medium and passaging cell lines. Nat. Protocols 2, 2276–2284 (2007)

    Article  CAS  Google Scholar 

  3. M. Lacroix, Persistent use of false cell lines. Int. J. Cancer 122, 1–4 (2008)

    Article  CAS  Google Scholar 

  4. J.-P. Gillet, S. Varma, M.M. Gottesman, The clinical relevance of cancer cell lines. J. Natl. Cancer Inst. 105, 452–458 (2013)

    Article  CAS  Google Scholar 

  5. I. Garitaonandia, H. Amir, F.S. Boscolo, G.K. Wambua, H.L. Schultheisz, K. Sabatini, R. Morey, S. Waltz, Y.-C. Wang, H. Tran, T.R. Leonardo, K. Nazor, I. Slavin, C. Lynch, Y. Li, R. Coleman, I. Gallego Romero, G. Altun, D. Reynolds, S. Dalton, M. Parast, J.F. Loring, L.C. Laurent, Increased risk of genetic and epigenetic instability in human embryonic stem cells associated with specific culture conditions. PLoS ONE 10, e0118307 (2015)

    Article  Google Scholar 

  6. C. Pan, C. Kumar, S. Bohl, U. Klingmueller, M. Mann, Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol. Cellular Proteomics 8, 443–450 (2009)

    Article  CAS  Google Scholar 

  7. S. Wilkening, F. Stahl, A. Bader, comparison of primary human hepatocytes and hepatoma cell line HEPG2 with regard to their biotransformation properties. Drug Metab. Dispos. 31, 1035–1042 (2003)

    Article  CAS  Google Scholar 

  8. V. Sanchez-Valle, N.C. Chavez-Tapia, M. Uribe, N. Mendez-Sanchez, Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr. Med. Chem. 19, 4850–4860 (2012)

    Article  CAS  Google Scholar 

  9. C. Guguen-Guillouzo, A. Guillouzo, General review on in vitro hepatocyte models and their applications, in Methods in Molecular Biology, ed. by N.J. Clifton, vol. 640 (2010), pp. 1–40

    Google Scholar 

  10. C. Garcia-Ruiz, J.C. Fernandez-Checa, Redox regulation of hepatocyte apoptosis. J. Gastroenterol. Hepatol. 22(Suppl 1), S38–42 (2007)

    Article  CAS  Google Scholar 

  11. R. Singh, M.J. Czaja, Regulation of hepatocyte apoptosis by oxidative stress. J. Gastroenterol. Hepatol. 22(Suppl 1), S45–8 (2007)

    Article  CAS  Google Scholar 

  12. I. Kurose, H. Higuchi, S. Miura, H. Saito, N. Watanabe, R. Hokari, M. Hirokawa, M. Takaishi, S. Zeki, T. Nakamura, H. Ebinuma, S. Kato, H. Ishii, Oxidative stress-mediated apoptosis of hepatocytes exposed to acute ethanol intoxication. Hepatology 25, 368–378 (1997)

    Article  CAS  Google Scholar 

  13. Y. Sumida, E. Niki, Y. Naito, T. Yoshikawa, Involvement of free radicals and oxidative stress in NAFLD/NASH. Free Radic. Res. 47, 869–880 (2013)

    Article  CAS  Google Scholar 

  14. M.D. Norenberg, A.R. Jayakumar, K.V. Rama, Rao, oxidative stress in the pathogenesis of hepatic encephalopathy. Metab. Brain Dis. 19, 313–329 (2004)

    Article  CAS  Google Scholar 

  15. H. Tsukamoto, Oxidative stress, antioxidants, and alcoholic liver fibrogenesis, in Alcohol (Fayetteville, N.Y.), vol. 10 (1993), pp. 465–467

    Google Scholar 

  16. S. Pal, S.J. Polyak, N. Bano, W.C. Qiu, R.L. Carithers, M. Shuhart, D.R. Gretch, A. Das, Hepatitis C virus induces oxidative stress, DNA damage and modulates the DNA repair enzyme NEIL1. J. Gastroenterol. Hepatol. 25, 627–634 (2010)

    Article  CAS  Google Scholar 

  17. H. Cichoż-Lach, A. Michalak, Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol. WJG 20, 8082–8091 (2014)

    Google Scholar 

  18. B. Saberi, M. Shinohara, M.D. Ybanez, N. Hanawa, W.A. Gaarde, N. Kaplowitz, D. Han, Regulation of H(2)O(2)-induced necrosis by PKC and AMP-activated kinase signaling in primary cultured hepatocytes. Am. J. Physiol. Cell Physiol. 295, C50–63 (2008)

    Article  CAS  Google Scholar 

  19. M.G. Cotticelli, A.M. Crabbe, R.B. Wilson, M.S. Shchepinov, Insights into the role of oxidative stress in the pathology of Friedreich ataxia using peroxidation resistant polyunsaturated fatty acids. Redox Biol. 1, 398–404 (2013)

    Article  CAS  Google Scholar 

  20. S. Hill, C.R. Lamberson, L. Xu, R. To, H.S. Tsui, V.V. Shmanai, A.V. Bekish, A.M. Awad, B.N. Marbois, C.R. Cantor, N.A. Porter, C.F. Clarke, M.S. Shchepinov, Small amounts of isotope-reinforced polyunsaturated fatty acids suppress lipid autoxidation. Free Radic. Biol. Med. 53, 893–906 (2012)

    Article  CAS  Google Scholar 

  21. L.A. Herzenberg, D. Parks, B. Sahaf, O. Perez, M. Roederer, L.A. Herzenberg, The history and future of the fluorescence activated cell sorter and flow cytometry: a view from stanford. Clin. Chem. 48, 1819–1827 (2002)

    CAS  Google Scholar 

  22. Regenerative Medicine, Technical report, Department of Health and Human Services

    Google Scholar 

  23. D. Levitt, R. Mertelsmann, Hematopoietic Stem Cells: Biology and Therapeutic Applications (Taylor & Francis, 1995)

    Google Scholar 

  24. C.J. Eaves, Hematopoietic stem cells: concepts, definitions, and the new reality. Blood 125, 2605–2613 (2015)

    Article  CAS  Google Scholar 

  25. I. Godin, A. Cumano, Hematopoietic Stem Cell Development (Medical Intelligence Unit, Springer, US, 2010)

    Google Scholar 

  26. M. Kondo, Hematopoietic Stem Cell Biology. Stem Cell Biology and Regenerative Medicine (Humana Press, 2009)

    Google Scholar 

  27. D. Hernandez-Garcia, C.D. Wood, S. Castro-Obregon, L. Covarrubias, Reactive oxygen species: a radical role in development? Free Radic. Biol. Med. 49, 130–143 (2010)

    Article  CAS  Google Scholar 

  28. H. Sandoval, P. Thiagarajan, S.K. Dasgupta, A. Schumacher, J.T. Prchal, M. Chen, J. Wang, Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232–235 (2008)

    Article  CAS  Google Scholar 

  29. N.A. Maianski, J. Geissler, S.M. Srinivasula, E.S. Alnemri, D. Roos, T.W. Kuijpers, Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis. Cell Death Differ. 11, 143–153 (2004)

    Article  CAS  Google Scholar 

  30. C. Nombela-Arrieta, G. Pivarnik, B. Winkel, K.J. Canty, B. Harley, J.E. Mahoney, S.-Y. Park, J. Lu, A. Protopopov, L.E. Silberstein, Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat. Cell Biol. 15, 533–543 (2013)

    Article  CAS  Google Scholar 

  31. H.M. Shapiro, Practical Flow Cytometry (Wiley, 2005)

    Google Scholar 

  32. S.T. Fraser, R.G. Midwinter, B.S. Berger, R. Stocker, Heme oxygenase-1: a critical link between iron metabolism, erythropoiesis, and development. Adv. Hematol. 2011, 473709 (2011)

    Article  Google Scholar 

  33. J. Isern, S.T. Fraser, Z. He, M.H. Baron, Developmental niches for embryonic erythroid cells. Blood Cells Molecules Dis. 44, 207–208 (2010)

    Article  CAS  Google Scholar 

  34. K. McGrath, J. Palis, Ontogeny of erythropoiesis in the mammalian embryo. Curr. Top. Dev. Biol. 82, 1–22 (2008)

    Article  CAS  Google Scholar 

  35. P.D. Kingsley, J. Malik, K.A. Fantauzzo, J. Palis, Yolk sac-derived primitive erythroblasts enucleate during mammalian embryogenesis. Blood 104, 19–25 (2004)

    Article  CAS  Google Scholar 

  36. S.T. Fraser, J. Isern, M.H. Baron, Maturation and enucleation of primitive erythroblasts during mouse embryogenesis is accompanied by changes in cell-surface antigen expression. Blood 109, 343–352 (2006)

    Article  Google Scholar 

  37. M. Socolovsky, Molecular insights into stress erythropoiesis. Curr. Opin. Hematol. 14, 215–224 (2007)

    Article  Google Scholar 

  38. M.H. Baron, Embryonic origins of mammalian hematopoiesis. Exp. Hematol. 31, 1160–1169 (2003)

    Article  CAS  Google Scholar 

  39. K. Ito, A. Hirao, F. Arai, S. Matsuoka, K. Takubo, I. Hamaguchi, K. Nomiyama, K. Hosokawa, K. Sakurada, N. Nakagata, Y. Ikeda, T.W. Mak, T. Suda, Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431, 997–1002 (2004)

    Article  CAS  Google Scholar 

  40. Y.-Y. Jang, S.J. Sharkis, A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110, 3056–3063 (2007)

    Article  CAS  Google Scholar 

  41. P. Rimmelé, C. Bigarella, R. Liang, B. Izac, R. Dieguez-Gonzalez, G. Barbet, M. Donovan, C. Brugnara, J. Blander, D. Sinclair, S. Ghaffari, Aging-like phenotype and defective lineage specification in SIRT1-deleted hematopoietic stem and progenitor cells. Stem Cell Rep. 3, 44–59 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amandeep Kaur .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, A. (2018). Ex Vivo Studies. In: Fluorescent Tools for Imaging Oxidative Stress in Biology. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-73405-7_7

Download citation

Publish with us

Policies and ethics