Advertisement

In Cellulo Studies

  • Amandeep KaurEmail author
Chapter
  • 510 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Understanding the morphological and physiological processes that occur within a biological system is critical to addressing many questions pertaining to health and disease.

References

  1. 1.
    J. Paul, Cell and Tissue Culture (Churchill Livingstone, 1975)Google Scholar
  2. 2.
    H.A. Laken, M.W. Leonard, Understanding and modulating apoptosis in industrial cell culture. Curr. Opin. Biotechnol. 12, 175–179 (2001)CrossRefGoogle Scholar
  3. 3.
    S. Ozturk, W.S. Hu, Cell Culture Technology for Pharmaceutical and Cell-Based Therapies (Biotechnology and Bioprocessing) (CRC Press, New York, 2005)CrossRefGoogle Scholar
  4. 4.
    S.P. Langdon, Cancer Cell Culture: Methods and Protocols. Methods in Molecular Medicine (Humana Press, 2004)Google Scholar
  5. 5.
    M.P. Lutolf, P.M. Gilbert, H.M. Blau, Designing materials to direct stem-cell fate. Nature 462, 433–441 (2009)CrossRefGoogle Scholar
  6. 6.
    J.B. Griffiths, Serum and growth factors in cell culture media-an introductory review. Dev. Biol. Stand. 66, 155–160 (1987)Google Scholar
  7. 7.
    T. Lai, Y. Yang, K.S. Ng, Advances in Mammalian Cell Line Development Technologies for Recombinant Protein Production (2013)Google Scholar
  8. 8.
    K.E. Hellstrom, I. Hellstrom, Immunological enhancement as studied by cell culture techniques. Annu. Rev. Microbiol. 24, 373–398 (1970)CrossRefGoogle Scholar
  9. 9.
    T. Reya, S.J. Morrison, M.F. Clarke, I.L. Weissman, Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001)CrossRefGoogle Scholar
  10. 10.
    G. Wu, Assay Development: Fundamentals and Practices (Wiley, 2010)Google Scholar
  11. 11.
    K. Wilson, J. Walker, Principles and Techniques of Biochemistry and Molecular Biology. Principles and Techniques of Biochemistry and Molecular Biology (Cambridge University Press, 2010)Google Scholar
  12. 12.
    M. Aswendt, J. Adamczak, A. Tennstaedt, A review of novel optical imaging strategies of the stroke pathology and stem cell therapy in stroke (2014)Google Scholar
  13. 13.
    M.K. Carpenter, E.S. Rosler, G.J. Fisk, R. Brandenberger, X. Ares, T. Miura, M. Lucero, M.S. Rao, Properties of four human embryonic stem cell lines maintained in a feeder-free culture system. Dev. Dyn.: An official publication of the American Association of Anatomists 229, 243–258 (2004)Google Scholar
  14. 14.
    S.G. Rhee, Redox signaling: hydrogen peroxide as intracellular messenger. Exp. Mol. Med. 31, 53–59 (1999)CrossRefGoogle Scholar
  15. 15.
    R.S. Sohal, R.G. Allen, C. Nations, Oxygen free radicals play a role in cellular differentiation: an hypothesis. J. Radic. Biol. Med. 2, 175–181 (1986)CrossRefGoogle Scholar
  16. 16.
    B. Ateghang, M. Wartenberg, M. Gassmann, H. Sauer, Regulation of cardiotrophin-1 expression in mouse embryonic stem cells by HIF-1alpha and intracellular reactive oxygen species. J. Cell Sci. 119, 1043–1052 (2006)CrossRefGoogle Scholar
  17. 17.
    L. Ding, X.-G. Liang, Y. Hu, D.-Y. Zhu, Y.-J. Lou, Involvement of p38MAPK and reactive oxygen species in icariin-induced cardiomyocyte differentiation of murine embryonic stem cells in vitro. Stem Cells Dev. 17, 751–760 (2008)CrossRefGoogle Scholar
  18. 18.
    S. Lange, J. Heger, G. Euler, M. Wartenberg, H.M. Piper, H. Sauer, Platelet-derived growth factor BB stimulates vasculogenesis of embryonic stem cell-derived endothelial cells by calcium-mediated generation of reactive oxygen species. Cardiovasc. Res. 81, 159–168 (2009)CrossRefGoogle Scholar
  19. 19.
    H. Sauer, M. Wartenberg, Reactive oxygen species as signaling molecules in cardiovascular differentiation of embryonic stem cells and tumor-induced angiogenesis. Antioxid. Redox Signal. 7, 1423–1434 (2005)CrossRefGoogle Scholar
  20. 20.
    K. Ito, A. Hirao, F. Arai, S. Matsuoka, K. Takubo, I. Hamaguchi, K. Nomiyama, K. Hosokawa, K. Sakurada, N. Nakagata, Y. Ikeda, T.W. Mak, T. Suda, Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431, 997–1002 (2004)CrossRefGoogle Scholar
  21. 21.
    K. Ito, A. Hirao, F. Arai, K. Takubo, S. Matsuoka, K. Miyamoto, M. Ohmura, K. Naka, K. Hosokawa, Y. Ikeda, T. Suda, Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat. Med. 12, 446–451 (2006)CrossRefGoogle Scholar
  22. 22.
    Y.-Y. Jang, S.J. Sharkis, A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110, 3056–3063 (2007)CrossRefGoogle Scholar
  23. 23.
    A.-R. Ji, S.-Y. Ku, M.S. Cho, Y.Y. Kim, Y.J. Kim, S.K. Oh, S.H. Kim, S.Y. Moon, Y.M. Choi, Reactive oxygen species enhance differentiation of human embryonic stem cells into mesendodermal lineage. Exp. Mol. Med. 42, 175–186 (2010)CrossRefGoogle Scholar
  24. 24.
    A. Gomes, N. Price, A. Ling, J. Moslehi, M.K. Montgomery, L. Rajman, J. White, J. Teodoro, C. Wrann, B. Hubbard, E. Mercken, C. Palmeira, R. deCabo, A. Rolo, N. Turner, E. Bell, D. Sinclair, Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624–1638 (2016)CrossRefGoogle Scholar
  25. 25.
    P. Rimmelé, C. Bigarella, R. Liang, B. Izac, R. Dieguez-Gonzalez, G. Barbet, M. Donovan, C. Brugnara, J. Blander, D. Sinclair, S. Ghaffari, Aging-like phenotype and defective lineage specification in SIRT1-deleted hematopoietic stem and progenitor cells. Stem Cell Rep. 3, 44–59 (2016)CrossRefGoogle Scholar
  26. 26.
    C.D. Vulpe, S. Packman, Cellular copper transport. Annu. Rev. Nutr. 15, 293–322 (1995)CrossRefGoogle Scholar
  27. 27.
    E.D. Harris, Copper transport: an overview, in Proceedings of the Society for Experimental Biology and Medicine, vol. 196 (Society for Experimental Biology and Medicine, New York, N.Y., 1991), pp. 130–140Google Scholar
  28. 28.
    J.R. Prohaska, Role of copper transporters in copper homeostasis. Am. J. Clin. Nutr. 88, 826S–829S (2008)CrossRefGoogle Scholar
  29. 29.
    A. Zabek-Adamska, R. Drozdz, J.W. Naskalski, Dynamics of reactive oxygen species generation in the presence of copper(II)-histidine complex and cysteine. Acta Biochim. Pol. 60, 565–571 (2013)Google Scholar
  30. 30.
    T.S. Koskenkorva-Frank, G. Weiss, W.H. Koppenol, S. Burckhardt, The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: Insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic. Biol. Med. 65, 1174–1194 (2013)CrossRefGoogle Scholar
  31. 31.
    B. Zhou, J. Gitschier, hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc. Natl. Acad. Sci. U.S.A. 94, 7481–7486 (1997)CrossRefGoogle Scholar
  32. 32.
    L.B. Moller, C. Petersen, C. Lund, N. Horn, Characterization of the hCTR1 gene: genomic organization, functional expression, and identification of a highly homologous processed gene. Gene 257, 13–22 (2000)CrossRefGoogle Scholar
  33. 33.
    Y.M. Kuo, B. Zhou, D. Cosco, J. Gitschier, The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc. Natl. Acad. Sci. U.S.A. 98, 6836–6841 (2001)CrossRefGoogle Scholar
  34. 34.
    T. Haremaki, D.C. Weinstein, Xmc mediates Xctr1-independent morphogenesis in Xenopus laevis. Dev. Dyn.: An official publication of the American Association of Anatomists 238, 2382–2387 (2009)Google Scholar
  35. 35.
    H.-Q. Duong, Y.B. Hong, J.S. Kim, H.-S. Lee, Y.W. Yi, Y.J. Kim, A. Wang, W. Zhao, C.H. Cho, Y.-S. Seong, I. Bae, Inhibition of checkpoint kinase 2 (CHK2) enhances sensitivity of pancreatic adenocarcinoma cells to gemcitabine. J. Cell Mol. Med. 17, 1261–1270 (2013)CrossRefGoogle Scholar
  36. 36.
    E.K.-H. Han, T. Mcgonigal, C. Butler, V.L. Giranda, Y. Luo, Characterization of Akt overexpression in MiaPaCa-2 cells: prohibitin is an Akt substrate both in vitro and in cells. Anticancer Res. 28, 957–963 (2008)Google Scholar
  37. 37.
    Y. Iwagami, H. Eguchi, H. Nagano, H. Akita, N. Hama, H. Wada, K. Kawamoto, S. Kobayashi, A. Tomokuni, Y. Tomimaru, M. Mori, Y. Doki, miR-320c regulates gemcitabine-resistance in pancreatic cancer via SMARCC1. Br. J. Cancer 109, 502–511 (2013)CrossRefGoogle Scholar
  38. 38.
    A.A. Yunis, G.K. Arimura, D.J. Russin, Human pancreatic carcinoma (MIA PaCa-2) in continuous culture: sensitivity to asparaginase. Int. J. Cancer. Journal international du cancer 19, 128–135 (1977)Google Scholar
  39. 39.
    I.S. Ahmed, H.J. Rohe, K.E. Twist, M.N. Mattingly, R.J. Craven, Progesterone receptor membrane component 1 (Pgrmc1): a heme-1 domain protein that promotes tumorigenesis and is inhibited by a small molecule. J. Pharmacol. Exp. Therapeut. 333, 564–573 (2010)CrossRefGoogle Scholar
  40. 40.
    R.M. Losel, D. Besong, J.J. Peluso, M. Wehling, Progesterone receptor membrane component 1-many tasks for a versatile protein. Steroids 73, 929–934 (2008)CrossRefGoogle Scholar
  41. 41.
    H.J. Rohe, I.S. Ahmed, K.E. Twist, R.J. Craven, PGRMC1 (progesterone receptor membrane component 1): a targetable protein with multiple functions in steroid signaling, P450 activation and drug binding. Pharmacol. Therapeut. 121, 14–19 (2009)CrossRefGoogle Scholar
  42. 42.
    A.M. Friel, L. Zhang, C.A. Pru, N.C. Clark, M.L. McCallum, L.J. Blok, T. Shioda, J.J. Peluso, B.R. Rueda, J.K. Pru, Progesterone receptor membrane component 1 deficiency attenuates growth while promoting chemosensitivity of human endometrial xenograft tumors. Cancer Lett. 356, 434–442 (2015)CrossRefGoogle Scholar
  43. 43.
    X. Zhu, Y. Han, Z. Fang, W. Wu, M. Ji, F. Teng, W. Zhu, X. Yang, X. Jia, C. Zhang, Progesterone protects ovarian cancer cells from cisplatin-induced inhibitory effects through progesterone receptor membrane component 1/2 as well as AKT signaling. Oncol. Rep. 30, 2488–2494 (2013)CrossRefGoogle Scholar
  44. 44.
    M.A. Cahill, Progesterone receptor membrane component 1: an integrative review. J. Steroid Biochem. Mol. Biol. 105, 16–36 (2007)CrossRefGoogle Scholar
  45. 45.
    J.J. Peluso, A. Pappalardo, R. Losel, M. Wehling, Progesterone membrane receptor component 1 expression in the immature rat ovary and its role in mediating progesterone’s antiapoptotic action. Endocrinology 147, 3133–3140 (2006)CrossRefGoogle Scholar
  46. 46.
    H. Neubauer, S.E. Clare, W. Wozny, G.P. Schwall, S. Poznanovic, W. Stegmann, U. Vogel, K. Sotlar, D. Wallwiener, R. Kurek, T. Fehm, M.A. Cahill, Breast cancer proteomics reveals correlation between estrogen receptor status and differential phosphorylation of PGRMC1. Breast Cancer Res.: BCR 10, R85 (2008)Google Scholar
  47. 47.
    P.P. Adhikary, Role of Progesterone Receptor Membrane Component 1 (PGRMC1) in Cancer Cell Biology. Ph.D. thesis, Charles Sturt University, 2016Google Scholar
  48. 48.
    E.H. Sarsour, M.G. Kumar, L. Chaudhuri, A.L. Kalen, P.C. Goswami, Redox control of the cell cycle in health and disease. Antioxid. Redox Signal. 11, 2985–3011 (2009)CrossRefGoogle Scholar
  49. 49.
    M. Brand, D. Nicholls, Assessing mitochondrial dysfunction in cells. Biochem. J. 435, 297–312 (2011)CrossRefGoogle Scholar
  50. 50.
    The Official Journal of the Society for, N. Yadava, D.G. Nicholls, Spare respiratory capacity rather than oxidative stress regulates glutamate excitotoxicity after partial respiratory inhibition of mitochondrial complex I with rotenone. J. Neurosci Neuroscience 27, 7310–7317 (2007)CrossRefGoogle Scholar
  51. 51.
    L.A. Kunz-Schughart, Multicellular tumor spheroids: intermediates between monolayer culture and in vivo tumor. Cell Biol. Int. 23, 157–161 (1999)CrossRefGoogle Scholar
  52. 52.
    G. Hamilton, Multicellular spheroids as an in vitro tumor model. Cancer Lett. 131, 29–34 (1998)CrossRefGoogle Scholar
  53. 53.
    F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, L.A. Kunz-Schughart, Multicellular tumor spheroids: an underestimated tool is catching up again. J. Biotechnol. 148, 3–15 (2010)CrossRefGoogle Scholar
  54. 54.
    W. Mueller-Klieser, Multicellular spheroids. A review on cellular aggregates in cancer research. J. Cancer Res. Clin. Oncol. 113, 101–122 (1987)CrossRefGoogle Scholar
  55. 55.
    D. Shweiki, M. Neeman, A. Itin, E. Keshet, Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications for tumor angiogenesis. Proc. Natl. Acad. Sci. 92, 768–772 (1995)CrossRefGoogle Scholar
  56. 56.
    K.R. Frenzel, R.M. Saller, J. Kummermehr, S. Schultz-Hector, Quantitative distinction of cisplatin-sensitive and -resistant mouse fibrosarcoma cells grown in multicell tumor spheroids. Cancer Res. 55, 386–391 (1995)Google Scholar
  57. 57.
    K.A. Krohn, J.M. Link, R.P. Mason, Molecular Imaging of Hypoxia. J. Nucl. Med. 49, 129S–148S (2008)CrossRefGoogle Scholar
  58. 58.
    R.M. Sutherland, B. Sordat, J. Bamat, H. Gabbert, B. Bourrã, Oxygà nationand Differentiation in Multicellular Colon Carcinoma1 Spheroids of Human. Regulation, 5320–5329 (1986)Google Scholar
  59. 59.
    U. Berchner-Pfannschmidt, S. Frede, C. Wotzlaw, J. Fandrey, Imaging of the hypoxia-inducible factor pathway: insights into oxygen sensing. Eur. Respir. J. 32, 210–217 (2008)CrossRefGoogle Scholar
  60. 60.
    A.K. Renfrew, N.S. Bryce, T.W. Hambley, Delivery and release of curcumin by a hypoxia-activated cobalt chaperone: a XANES and FLIM study. Chem. Sci. 4, 3731–3739 (2013)CrossRefGoogle Scholar
  61. 61.
    R.H. Thomlinson, L.H. Gray, The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9, 539–549 (1955)CrossRefGoogle Scholar
  62. 62.
    S. Zhang, M. Hosaka, T. Yoshihara, K. Negishi, Y. Iida, S. Tobita, T. Takeuchi, Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals. Cancer Res. 70, 4490–4498 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.School of ChemistryUniversity of SydneySydneyAustralia

Personalised recommendations