FRET Based Ratiometric Redox Probes

  • Amandeep KaurEmail author
Part of the Springer Theses book series (Springer Theses)


To date, only a limited number of reversible redox probes have been reported, most of which are intensity-based, for example NpFR1 and NpFR2 reported in the Chap.  2 Wang et al. (Chin J Anal Chem 40:1301–1308, 2012 [1]), Kaur et al. (Angew Chem 55:1602–1613, 2016 [2]).


  1. 1.
    X. Wang, W.-X. Qi, Y.-Q. Xia, B. Tang, Progress on fluorescent probes for reversible redox cycles and their application in living cell imaging. Chin. J. Anal. Chem. 40, 1301–1308 (2012)Google Scholar
  2. 2.
    A. Kaur, J.L. Kolanowski, E.J. New, Reversible fluorescent probes for biological redox states. Angew. Chem. Int. Ed. Engl. 55, 1602–13 (2016)CrossRefGoogle Scholar
  3. 3.
    K.M. Fisher, C.J. Campbell, Ratiometric biological nanosensors. Biochem. Soc. Trans. 42, 899–904 (2014)CrossRefGoogle Scholar
  4. 4.
    A. Kaur, M.A. Haghighatbin, C.F. Hogan, E.J. New, A FRET-based ratiometric redox probe for detecting oxidative stress by confocal microscopy. FLIM Flow Cytometry. Chem. Commun. 51, 10510–10513 (2015)Google Scholar
  5. 5.
    D. Srikun, E.W. Miller, D.W. Domaille, C.J. Chang, An ICT-based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells. J. Am. Chem. Soc. 130, 4596–4597 (2008)CrossRefGoogle Scholar
  6. 6.
    J. Fan, W. Sun, M. Hu, J. Cao, G. Cheng, H. Dong, K. Song, Y. Liu, S. Sun, X. Peng, An ICT-based ratiometric probe for hydrazine and its application in live cells. Chem. Commun. 48, 8117–8119 (2012)CrossRefGoogle Scholar
  7. 7.
    B. Liu, H. Wang, T. Wang, Y. Bao, F. Du, J. Tian, Q. Li, R. Bai, A new ratiometric ESIPT sensor for detection of palladium species in aqueous solution. Chem. Commun. 48, 2867–2869 (2012)CrossRefGoogle Scholar
  8. 8.
    Z. Song, R.T.K. Kwok, E. Zhao, Z. He, Y. Hong, J.W.Y. Lam, B. Liu, B.Z. Tang, A ratiometric fluorescent probe based on ESIPT and AIE processes for alkaline phosphatase activity assay and visualization in living cells. ACS Appl. Mater. Interfaces 6, 17245–17254 (2014)CrossRefGoogle Scholar
  9. 9.
    J. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum Publishers, New York, Boston, Dordrecht, London, Moscow, 1999)CrossRefGoogle Scholar
  10. 10.
    E.A. Jares-Erijman, T.M. Jovin, FRET imaging. Nat. Biotechnol. 21, 1387–1395 (2003)CrossRefGoogle Scholar
  11. 11.
    L.D. Lavis, T.-Y. Chao, R.T. Raines, Latent blue and red fluorophores based on the trimethyl lock. ChemBioChem 7, 1151–1154 (2006)CrossRefGoogle Scholar
  12. 12.
    N.A. Kuznetsova, O.L. Kaliya, The photochemistry of coumarins. Russian Chem. Rev. 61, 683 (1992)CrossRefGoogle Scholar
  13. 13.
    L. Yuan, W. Lin, K. Zheng, S. Zhu, FRET-based small-molecule fluorescent probes: rational design and bioimaging applications. Acc. Chem. Res. 46, 1462–1473 (2013)CrossRefGoogle Scholar
  14. 14.
    R. Roy, S. Hohng, T. Ha, A practical guide to single-molecule FRET. Nat. Meth. 5, 507–516 (2008)CrossRefGoogle Scholar
  15. 15.
    D.J. Crawford, A.A. Hoskins, L.J. Friedman, J. Gelles, M.J. Moore, Single-molecule colocalization FRET evidence that spliceosome activation precedes stable approach of 5 splice site and branch site. Proc. Natl. Acad. Sci. 110, 6783–6788 (2013)CrossRefGoogle Scholar
  16. 16.
    M.C. Morris, Fluorescence-based biosensors: from concepts to applications, in Progress in Molecular Biology and Translational Science (Elsevier Science, 2012)Google Scholar
  17. 17.
    A.E. Albers, V.S. Okreglak, C.J. Chang, A FRET-based approach to ratiometric fluorescence detection of hydrogen peroxide. J. Am. Chem. Soc. 128, 9640–9641 (2006)CrossRefGoogle Scholar
  18. 18.
    F. Muller, NMR Spectroscopy on Flavins and Flavoproteins (2014)Google Scholar
  19. 19.
    F. Yoneda, Y. Sakuma, M. Ichiba, K. Shinomura, Syntheses of isoalloxazines and isoalloxazine 5-oxides a new synthesis of riboflavin. J. Am. Chem. Soc. 98, 830–835 (1976)CrossRefGoogle Scholar
  20. 20.
    C.-H. Lee, S.-B. Wu, C.-H. Hong, H.-S. Yu, Y.-H. Wei, Molecular mechanisms of UV-induced apoptosis and its effects on skin residential cells: the implication in UV-based phototherapy. Int. J. Mol. Sci. 14, 6414–35 (2013)CrossRefGoogle Scholar
  21. 21.
    H.C. Kolb, M.G. Finn, K.B. Sharpless, Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001)CrossRefGoogle Scholar
  22. 22.
    S. Bräse, C. Gil, K. Knepper, V. Zimmermann, Organic azides: an exploding diversity of a unique class of compounds. Angew. Chem. Int. Ed. 44, 5188–5240 (2005)CrossRefGoogle Scholar
  23. 23.
    L. Zhang, X. Chen, P. Xue, H.H.Y. Sun, I.D. Williams, K.B. Sharpless, V.V. Fokin, G. Jia, Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J. Am. Chem. Soc. 127, 15998–15999 (2005)CrossRefGoogle Scholar
  24. 24.
    A.J.W.G. Visser, S. Ghisla, V. Massey, F. MÜLler, C. Veeger, Fluorescence properties of reduced flavins and flavoproteins. Eur. J. Biochem. 101, 13–21 (1979)CrossRefGoogle Scholar
  25. 25.
    B. König, M. Pelka, H. Zieg, T. Ritter, H. Bouas-Laurent, R. Bonneau, J.-P. Desvergne, Photoinduced electron transfer in a phenothiazine riboflavin dyad assembled by zincimide coordination in water. J. Am. Chem. Soc. 121, 1681–1687 (1999)CrossRefGoogle Scholar
  26. 26.
    C.G. Zoski, Handbook of Electrochemistry (Elsevier, 2007)Google Scholar
  27. 27.
    P.T.C. So, C.Y. Dong, B.R. Masters, K.M. Berland, Two-photon excitation fluorescence microscopy. Annu. Rev. Biomed. Eng. 2, 399–429 (2000)CrossRefGoogle Scholar
  28. 28.
    M.Y. Berezin, S. Achilefu, Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110, 2641–2684 (2010)CrossRefGoogle Scholar
  29. 29.
    W. Becker, The Bh TCSPC Handbook: Time-correlated Single Photon Counting Modules SPC-130, SPC-134, SPC-130 EM, SPC-134 EM, SPC-140, SPC-144, SPC-150, SPC-154, SPC-630, SPC-730, SPC-830; Simple-Tau Systems, SPCM Software (SPCImage Data Analysis, Becker et Hickl, 2012)Google Scholar
  30. 30.
    H.M. Shapiro, Practical Flow Cytometry (Wiley, 2005)Google Scholar
  31. 31.
    E.R. Wendt, H. Ferry, D.R. Greaves, S. Keshav, Ratiometric analysis of fura red by flow cytometry: a technique for monitoring intracellular calcium flux in primary cell subsets. PLoS ONE 10, e0119532 (2015)CrossRefGoogle Scholar
  32. 32.
    A. Cossarizza, S. Salvioli, Flow cytometric analysis of mitochondrial membrane potential using JC-1, in Current Protocols in Cytometry, ed. by J. Paul Robinson, et al., Chap. 9 (2001), Unit 9.14Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.School of ChemistryUniversity of SydneySydneyAustralia

Personalised recommendations