Flavin Based Redox Probes

  • Amandeep KaurEmail author
Part of the Springer Theses book series (Springer Theses)


As outlined in Sect.  1.7, the design of a fluorescent probe requires the selection of appropriate fluorophores and a suitable redox responsive group.


Redox Probe Triphenylphosphonium Redox Response Cellular Oxidative Capacity Mitochondria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    V. Massey, Activation of molecular oxygen by flavins and flavoproteins. J. Biol. Chem. 269, 22459–22462 (1994)Google Scholar
  2. 2.
    J.D. Walsh, A.F. Miller, Flavin reduction potential tuning by substitution and bending. J. Mol. Struct. (Thoechem) 623, 185–195 (2003)CrossRefGoogle Scholar
  3. 3.
    A.J.W.G. Visser, S. Ghisla, V. Massey, F. MÜLler, C. Veeger, Fluorescence properties of reduced flavins and flavoproteins. Eur. J. Biochem. 101, 13–21 (1979)CrossRefGoogle Scholar
  4. 4.
    K. Koenig, H. Schneckenburger, Laser-induced autofluorescence for medical diagnosis. J. Fluoresc. 4, 17–40 (1994)CrossRefGoogle Scholar
  5. 5.
    J. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum Publishers, New York, Boston, Dordrecht, London, Moscow, 1999)CrossRefGoogle Scholar
  6. 6.
    J. Yeow, A. Kaur, M.D. Anscomb, E.J. New, A novel flavin derivative reveals the impact of glucose on oxidative stress in adipocytes. Chem. Commun. 50, 8181–8184 (2014)CrossRefGoogle Scholar
  7. 7.
    A. Kaur, K.W.L. Brigden, T.F. Cashman, S.T. Fraser, E.J. New, Mitochondrially targeted redox probe reveals the variations in oxidative capacity of the haematopoietic cells. Organ. Biomol. Chem. 13, 6686–6689 (2015)CrossRefGoogle Scholar
  8. 8.
    D.E. Edmondson, T.P. Singer, Oxidation-reduction properties of the 8\(\alpha \)-substituted flavins. J. Biol. Chem. 248, 8144–8149 (1973)Google Scholar
  9. 9.
    V. Favaudon, Oxidation kinetics of 1, 5-dihydroflavin by oxygen in non-aqueous solvent. Eur. J. Biochem. 78, 293–307 (1977)CrossRefGoogle Scholar
  10. 10.
    Y. Yamada, Y. Tomiyama, A. Morita, M. Ikekita, S. Aoki, BODIPY-based fluorescent redox potential sensors that utilize reversible redox properties of flavin. ChemBioChem 9, 853–856 (2008)CrossRefGoogle Scholar
  11. 11.
    R.M. Kierat, B.M. Thaler, R. Kramer, A fluorescent redox sensor with tuneable oxidation potential. Bioorg. Med. Chem. Lett. 20, 1457–1459 (2010)CrossRefGoogle Scholar
  12. 12.
    E.W. Miller, S.X. Bian, C.J. Chang, A fluorescent sensor for imaging reversible redox cycles in living cells. J. Am. Chem. Soc. 129, 3458–3459 (2007)CrossRefGoogle Scholar
  13. 13.
    Y.M. Go, D.P. Jones, Redox compartmentalization in eukaryotic cells. Biochim. Biophys. Acta 1780, 1273–1290 (2008)CrossRefGoogle Scholar
  14. 14.
    J. van Meerloo, G.J.L. Kaspers, J. Cloos, Cell sensitivity assays: the MTT assay, in Methods in Molecular Biology , vol. 731, (Clifton, N.J., 2011), pp. 237–245Google Scholar
  15. 15.
    A.A. Starkov, The role of mitochondria in reactive oxygen species metabolism and signaling. Ann. N. Y. Acad. Sci. 1147, 37–52 (2008)CrossRefGoogle Scholar
  16. 16.
    M.F. Ross, T.A. Prime, I. Abakumova, A.M. James, C.M. Porteous, R.A.J. Smith, M.P. Murphy, Rapid and extensive uptake and activation of hydrophobic triphenylphosphonium cations within cells. Biochem. J. 411, 633–645 (2008)CrossRefGoogle Scholar
  17. 17.
    M.P. Murphy, Targeting lipophilic cations to mitochondria. Biochimica et Biophysica Acta—Bioenergetics 1777, 1028–1031 (2008)CrossRefGoogle Scholar
  18. 18.
    A.M. James, H.M. Cochemé, M.P. Murphy, Mitochondria-targeted redox probes as tools in the study of oxidative damage and ageing. Mech. Ageing Dev. 126, 982–986 (2005)CrossRefGoogle Scholar
  19. 19.
    R. Kuhn, K. Reinemund, Über die Synthese des 6.7.9-Trimethyl-flavins (Lumi-lactoflavins). Berichte der deutschen chemischen Gesellschaft (A and B Series) 67, 1932–1936 (1934)Google Scholar
  20. 20.
    K.W. Dunn, M.M. Kamocka, J.H. McDonald, A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 300, C723–C742 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.School of ChemistryUniversity of SydneySydneyAustralia

Personalised recommendations