Skip to main content

Rehabilitation of Radioactively Contaminated Soil: Use of Bioremediation/Phytoremediation Techniques

  • Chapter
  • First Online:
Book cover Remediation Measures for Radioactively Contaminated Areas

Abstract

The release of radionuclides in the environment is of major concern. Radionuclides arise mainly from nuclear power production, nuclear accidents, nuclear weapons testing, uranium mining and processing and nuclear waste disposal. Remediation of the affected areas is urgently needed, since the presence of these contaminants represents a major human and environmental health concern. Bioremediation and phytoremediation have been considered the eco-friendly alternative to the environmentally problematic remediation of contaminated soils, recovering functions that make some future uses possible. Available studies demonstrate that both methodologies, combined or not with other chemical or physically-based strategies (to mitigate the availability of radionuclides), have the potential to be used inexpensively and effectively in the restoration of contaminated environments. In addition, bioremediation and phytoremediation are environment friendly procedures, and are therefore more accepted by regulatory bodies. In this chapter, the main problems associated to each type of radioactively contaminated site will be identified and the most relevant bioremediation and phytoremediation techniques to deal with this type of contamination, will be reviewed. Furthermore, the advantages and disadvantages of using such techniques will also be discussed with a perspective of identifying knowledge gaps and highlighting new approaches to deal with this challenging issue. The reasons for the existence of few applications in real scenarios of contamination will also be analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achal V, Pan X, Zhang D (2012) Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Chemosphere 89:764–768

    Article  CAS  Google Scholar 

  • Aftab K, Akhtar K, Jabbar A, Bukhari IH, Noreen R (2013) Physico-chemical study for zinc removal and recovery onto native/chemically modified Aspergillus flavus NA9 from industrial effluent. Water Res 47:4238–4246

    Article  CAS  Google Scholar 

  • Aleksakhin RM (2009) Radioactive contamination as a type of soil degradation. Euras Soil Sci 42:1386–1396

    Article  Google Scholar 

  • Alexander M, Loehr RC (1992) Bioremediation review. Science 258:874

    Article  CAS  Google Scholar 

  • Amachi S, Minami K, Miyasaka I, Fukunaga S (2010) Ability of anaerobic microorganisms to associate with iodine: 125I tracer experiments using laboratory strains and enriched microbial communities from subsurface formation water. Chemosphere 79:349–354

    Article  CAS  Google Scholar 

  • Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, Dayvault R, Karp K, Marutzky S, Metzler DR, Peacock A, White DC, Lowe M, Lovley DR (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69:5884–5891

    Article  CAS  Google Scholar 

  • Arai S, Yonezawa Y, Okazaki N, Matsumoto F, Shibazaki C, Shimizu R, Yamada M, Adachi M, Tamada T, Kawamoto M, Tokunaga H, Ishibashi M, Blaber M, Tokunaga M, Kuroki R (2015) Structure of a highly acidic β-lactamase from the moderate halophile Chromohalobacter sp. 560 and the discovery of a Cs + − selective binding site. Acta Crystallogr Sect D Biol Crystallogr 71:541–554

    Article  CAS  Google Scholar 

  • Bem H, Bou-Rabee F (2004) Environmental and health consequences of depleted uranium use in the 1991 Gulf War. Environ Int 30:123–134

    Article  CAS  Google Scholar 

  • Benzerara K, Miot J, Morin G, Ona-Nguema G, Skouri-Panet F, Férard C (2011) Significance, mechanisms and environmental implications of microbial biomineralization. Comptes Rendus Geosci 343:160–167

    Article  CAS  Google Scholar 

  • Bleise A, Danesi PR, Burkart W (2003) Properties, use and health effects of depleted uranium (DU): a general overview. J Environ Radioact 64:93–112

    Article  CAS  Google Scholar 

  • Burger M (2012) The risks of depleted uranium contamination in post-conflict countries: Findings and lessons learned from UNEP field assessments. Assess Restoring Nat Resour Post-conflict Peacebuil 5:163

    Google Scholar 

  • Carlsen TM, Peterson LE, Ulsh BA, Werner CA, Purvis KL, Sharber AC (2001) Radionuclide contamination at Kazakhstan’s Semipalatinsk test site: Implications on human and ecological health. Hum Ecol Risk Assess An Int J 7:943–955

    Article  Google Scholar 

  • Carvalho F, Madruga M, Reis M, Alves J, Oliveira J, Gouveia J, Silva L (2007) Radioactivity in the environment around past radium and uranium mining sites of Portugal. J Environ Radioact 96:39–46

    Article  CAS  Google Scholar 

  • Chen B, Jakobsen I, Roos P, Zhu YG (2005a) Effects of the mycorrhizal fungus Glomus intraradices on uranium uptake and accumulation by Medicago truncatula L. from uranium-contaminated soil. Plant Soil 275:349–359

    Article  CAS  Google Scholar 

  • Chen B, Zhu YG, Zhang X, Jakobsen I (2005b) The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil. Environ Sci Pollut Res Int 12:325–331

    Article  CAS  Google Scholar 

  • Chen B, Roos P, Zhu YG, Jakobsen I (2008) Arbuscular mycorrhizas contribute to phytostabilization of uranium in uranium mining tailings. J Environ Radioact 99:801–810

    Article  CAS  Google Scholar 

  • Christensen GC, Malyshev SV, Salbu B, Romanov GN, Selnais TD, Oughton D, Glagolenko YV, Amundsen I, Liv Rudjord A, Bjerk TO, Lind B (1995) Radioactive contamination in the environment of the nuclear enterprise Mayak, PA. Results from the joint Russian-Norwegian field work in 1994. The nuclear enterprise Mayak, PA. In: International conference on environmental radioactivity in the Arctic, pp 21–25

    Google Scholar 

  • Chung AP, Sousa T, Pereira A, Morais PV (2014) Microorganisms – tools for bioremediation of uranium contaminated environments. Proc Earth Planet Sci 8:53–58

    Article  CAS  Google Scholar 

  • Cook LL, Inouye RS, McGonigle TP (2009) Evaluation of four grasses for use in phytoremediation of Cs-contaminated arid land soil. Plant Soil 324:169–184

    Article  CAS  Google Scholar 

  • Das M, Adholeya A (2012) Role of microorganisms in remediation of contaminated soil. In: Satyanarayana T, Johri BN (eds) Microorganisms in environmental management: microbes and environment. Springer, Dordrecht, pp 81–111

    Google Scholar 

  • Das S, Dash HR, Chakraborty J (2016) Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Appl Microbiol Biotechnol 100:2967–2984

    Article  CAS  Google Scholar 

  • Dash HR, Das S (2015) Bioremediation of inorganic mercury through volatilization and biosorption by transgenic Bacillus cereus BW-03(pPW-05). Int Biodeterior Biodeg 103:179–185

    Article  CAS  Google Scholar 

  • Dighton J, Clint GM, Poskitt J (1991) Uptake and accumulation of 137Cs by upland grassland soil fungi: a potential pool of Cs immobilization. Mycol Res 95:1052–1056

    Article  CAS  Google Scholar 

  • Dighton J, Tugay T, Zhdanova N (2008) Fungi and ionizing radiation from radionuclides. FEMS Microbiol Lett 281:109–120

    Article  CAS  Google Scholar 

  • Dixit R, Wasiullah E, Malaviya D, Pandiyan K, Singh U, Sahu A, Shukla R, Singh B, Rai J, Sharma P, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  CAS  Google Scholar 

  • Dupré de Boulois H, Joner EJ, Leyval C, Jakobsen I, Chen BD, Roos P, Thiry Y, Rufyikiri G, Delvaux B, Declerck S (2008) Impact of arbuscular mycorrhizal fungi on uranium accumulation by plants. J Environ Radioact 99:775–784

    Article  CAS  Google Scholar 

  • Dushenkov S (2003) Trends in phytoremediation of radionuclides. Plant Soil 249:167–175

    Article  CAS  Google Scholar 

  • Dushenkov S, Mikheev A, Prokhnevsky A, Ruchko M, Boris S (1999) Phytoremediation of radiocesium-contaminated soil in the vicinity of Chernobyl, Ukraine. Environ Sci Technol 33:469–475

    Article  CAS  Google Scholar 

  • Eapen S, Singh S, Thorat V, Kaushik CP, Raj K, D’Souza SF (2006) Phytoremediation of radiostrontium (90Sr) and radiocesium (137Cs) using giant milky weed (Calotropis gigantea R.Br.) plants. Chemosphere 65:2071–2073

    Article  CAS  Google Scholar 

  • Ebbs SD, Brady DJ, Kochian LV (1998) Role of uranium speciation in the uptake and translocation of uranium by plants. J Exp Bot 49:1183–1190

    Article  CAS  Google Scholar 

  • Elekwachi C, Andresen J, Hodgman TC (2014) Global use of bioremediation technologies for decontamination of ecosystems. J Biorem Biodegrad 5:1–9

    Article  CAS  Google Scholar 

  • Endo S, Kajimoto T, Shizuma K (2013) Paddy-field contamination with 134Cs and 137Cs due to Fukushima Dai-ichi Nuclear Power Plant accident and soil-to-rice transfer coefficients. J Environ Radioact 116:59–64

    Article  CAS  Google Scholar 

  • Entry JA, Vance NC, Hamilton MA, Zabowski D, Watrud LS, Adriano DC (1996) Phytoremediation of soil contaminated with low concentrations of radionuclides. Water Air Soil Pollut 88:167–176

    CAS  Google Scholar 

  • Evrard O, Chartin C, Onda Y, Lepage H, Cerdan O, Lefèvre I, Ayrault S (2014) Renewed soil erosion and remobilisation of radioactive sediment in Fukushima coastal rivers after the 2013 Typhoons. Sci Rep 4:4574

    Article  CAS  Google Scholar 

  • Evseeva T, Belykh E, Geras’kin S, Majstrenko T (2012) Estimation of radioactive contamination of soils from the “Balapan” and the “Experimental field” technical areas of the Semipalatinsk nuclear test site. J Environ Radioact 109:52–59

    Article  CAS  Google Scholar 

  • Fairlie I (2014) A hypothesis to explain childhood cancers near nuclear power plants. J Environ Radioact 133:10–17

    Article  CAS  Google Scholar 

  • Fesenko S, Howard BJ (2012) Guidelines for remediation strategies to reduce the radiological consequences of environmental contamination. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Francis AJ, Nancharaiah YV (2015) In situ and ex situ bioremediation of radionuclide-contaminated soils at nuclear and norm sites. In: Velzen Leo van BT (ed) Environmental remediation and restoration of contaminated nuclear and norm sites, in: Woodhead Publishing Series in Energy. Woodhead Publishing, Cambridge, pp 185–236

    Chapter  Google Scholar 

  • Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28

    Article  CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  Google Scholar 

  • Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163:475–510

    Article  CAS  Google Scholar 

  • Gouthu S, Arie T, Ambe S, Yamaguchi I (1997) Screening of plant species for comparative uptake abilities of radioactive Co, Rb, Sr and Cs from soil. J Radioanal Nucl Chem 22:247–251

    Article  Google Scholar 

  • Groudev S, Spasova I, Nicolova M, Georgiev P (2010) In situ bioremediation of contaminated soils in uranium deposits. Hydrometallurgy 104:518–523

    Article  CAS  Google Scholar 

  • Ha J, Gélabert A, Spormann AM, Brown GE (2010) Role of extracellular polymeric substances in metal ion complexation on Shewanella oneidensis: Batch uptake, thermodynamic modeling, ATR-FTIR, and EXAFS study. Geochim Cosmochim Acta 74:1–15

    Article  CAS  Google Scholar 

  • Handley-Sidhu S, Keith-Roach MJ, Lloyd JR, Vaughan DJ (2010) A review of the environmental corrosion, fate and bioavailability of munitions grade depleted uranium. Sci Total Environ 408:5690–5700

    Article  CAS  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Micro 9:177–192

    Article  CAS  Google Scholar 

  • Hazen TC, Tabak HH (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides: 2. Field research on bioremediation of metals and radionuclides. Rev Environ Sci Bio/Technol 4:157–183

    Article  CAS  Google Scholar 

  • Huang RH, Lu YM, Yang HL, Huang W, Chen K (2016) Effects of arbuscular mycorrhizal fungi on caesium accumulation and the ascorbate-glutathione cycle of Sorghum halepense. Sci Asia 42:323–331

    Article  Google Scholar 

  • IAEA (1988) The radiological accidents in Goiania, Vienna

    Google Scholar 

  • IAEA (1996) Health and environmental aspects of nuclear fuel cycle facilities p /r\, nuclear fuel cycle and materials section. International Atomic Energy Agency, Vienna

    Google Scholar 

  • IAEA (1999) Technologies for Remediation of Radioactively Contaminated Sites, Vienna

    Google Scholar 

  • IAEA (2000) Management of radioactive waste from the use of radionuclides in medicine, Vienna

    Google Scholar 

  • IAEA (2001) Present and future environmental impact of the Chernoby, Vienna

    Google Scholar 

  • IAEA (2002a) Monitoring and surveillance of residues from the mining and milling of uranium and thorium, Vienna. IAEA

    Google Scholar 

  • IAEA (2002b) Environmental aspects based on operational performance of nuclear fuel fabrication facilities, Nuclear Fuel Cycle and Materials Section, International Atomic Energy Agency, Vienna

    Google Scholar 

  • IAEA (2003) Radiological Conditions in Areas of Kuwait with Residues of Depleted Uranium, Vienna

    Google Scholar 

  • IAEA (2005) Environmental contamination from uranium production facilities and their remediation. In: Proceedings of an international work held on Lisbon, Portugal. 11–13 February 2004

    Google Scholar 

  • IAEA (2006) Environmental Consequences of the Chernobyl Accident and their Remediation: Twenty Years of Experience, Vienna

    Google Scholar 

  • IAEA (2008) Spent fuel reprocessing options. International Atomic Energy Agency, Vienna

    Google Scholar 

  • IAEA (2009) Establishment of uranium mining and processing operations in the context of sustainable development. International Atomic Energy Agency, Vienna

    Google Scholar 

  • IAEA (2010) Best practice in environmental management of uranium mining. International Atomic Energy Agency, Vienna

    Google Scholar 

  • IAEA (2011) International mission on remediation of large contaminated areas off-site Fukushima Daiichi Nuclear Power Plant – final report, Vienna.

    Google Scholar 

  • IAEA (2012) Efficient water management in water cooled reactors. In: IAEA nuclear energy series no. NP-T-2.6, Vienna.

    Google Scholar 

  • IAEA (2014) Radiation protection after the Fukushima Daiichi Accident: promoting confidence and understanding, Vienna.

    Google Scholar 

  • IAEA (2017) General distribution international status and prospects for nuclear power

    Google Scholar 

  • Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A, Benotmane MA, Leys N, Vallaeys T, Lapidus A, Monchy S, Médigue C, Taghavi S, McCorkle S, Dunn J, van der Lelie D, Mergeay M (2010) The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 5:e10433

    Article  CAS  Google Scholar 

  • Jiang GCT, Aschner M (2009) Depleted uranium. In: Handbook of toxicology of chemical warfare agents. Academic, Amsterdam, pp 393–406

    Chapter  Google Scholar 

  • Joshi PK, Swarup A, Maheshwari S, Kumar R, Singh N (2011) Bioremediation of heavy metals in liquid media through fungi isolated from contaminated sources. Ind J Microbiol 51:482–487

    Article  CAS  Google Scholar 

  • Kadyrzhanov KK, Khazhekber S, Solodukhin VP, Lukashenko SN, Kazachevskiy IV, Rofer C, Poznyak VL, Knyazev BB, Knatova MK, Nazarenko LM, Yakushev EM (2005) Plutonium at the Semipalatinsk Nuclear Test Site (SNTS). J Radioanal Nucl Chem 263:229–234

    Article  CAS  Google Scholar 

  • Kaewtubtim P, Meeinkuirt W, Seepom S, Pichtel J (2017) Radionuclide ((226)Ra, (232)Th, (40)K) accumulation among plant species in mangrove ecosystems of Pattani Bay, Thailand. Mar Pollut Bull 115:391–400

    Article  CAS  Google Scholar 

  • Kato H, Onda Y, Teramage M (2012) Depth distribution of 137Cs, 134Cs, and 131I in soil profile after Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 111:59–64

    Article  CAS  Google Scholar 

  • Kumar R, Singh S, Singh OV (2007) Bioremediation of radionuclides: Emerging technologies. Omi A J Integr Biol 11:295–304

    Article  CAS  Google Scholar 

  • Lachner J, Christl M, Alfimov V, Hajdas I, Kubik PW, Schulze-König T, Wacker L, Synal HA (2014) 41Ca, 14C and 10Be concentrations in coral sand from the Bikini atoll. J Environ Radioact 129:68–72

    Article  CAS  Google Scholar 

  • Lasat MM, Fuhrmann M, Ebbs SD, Cornish JE, Kochian LV (1998) Phytoremediation of a radiocesium-contaminated soil: Evaluation of cesium-137 bioaccumulation in the shoots of three plant species. J Environ Qual 27:165–169

    Article  CAS  Google Scholar 

  • Lee JH (2013) An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioprocess Eng 18:431–439

    Article  CAS  Google Scholar 

  • Lee SH, Kim EY, Hyun S, Kim JG (2009) Metal availability in heavy metal-contaminated open burning and open detonation soil: Assessment using soil enzymes, earthworms, and chemical extractions. J Hazard Mater 170:382–388

    Article  CAS  Google Scholar 

  • Li X, Ding C, Liao J, Lan T, Li F, Zhang D, Yang J, Yang Y, Luo S, Tang J, Liu N (2014) Biosorption of uranium on Bacillus sp. dwc-2: preliminary investigation on mechanism. J Environ Radioact 135:6–12

    Article  CAS  Google Scholar 

  • Lloyd JR, Sole VA, Van Praagh CV, Lovley DR (2000) Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Appl Environ Microbiol 66:3743–3749.

    Article  CAS  Google Scholar 

  • Lourenço J, Pereira RO, Silva AC, Morgado JM, Carvalho FP, Oliveira JM, Malta MP, Paiva AA, Mendo SA, Gonçalves FJ (2011) Genotoxic endpoints in the earthworms sub-lethal assay to evaluate natural soils contaminated by metals and radionuclides. J Hazard Mater 186:788–795

    Article  CAS  Google Scholar 

  • Lourenço J, Pereira R, Silva A, Carvalho F, Oliveira J, Malta M, Paiva A, Gonçalves F, Mendo S (2012) Evaluation of the sensitivity of genotoxicity and cytotoxicity endpoints in earthworms exposed in situ to uranium mining wastes. Ecotoxicol Environ Saf 75:46–54

    Article  CAS  Google Scholar 

  • Lourenço J, Pereira R, Gonçalves F, Mendo S (2013a) Metal bioaccumulation, genotoxicity and gene expression in the European wood mouse (Apodemus sylvaticus) inhabiting an abandoned uranium mining area. Sci Total Environ 443:673–680

    Article  CAS  Google Scholar 

  • Lourenço J, Pereira R, Pinto F, Caetano T, Silva A, Carvalheiro T, Guimarães A, Gonçalves F, Paiva A, Mendo S (2013b) Biomonitoring a human population inhabiting nearby a deactivated uranium mine. Toxicology 305:89–98

    Article  CAS  Google Scholar 

  • Lourenço J, Mendo S, Pereira R (2016) Radioactively contaminated areas: Bioindicator species and biomarkers of effect in an early warning scheme for a preliminary risk assessment. J Hazard Mater 317:503–542

    Article  CAS  Google Scholar 

  • Lourenço J, Marques S, Carvalho FP, Oliveira J, Malta M, Santos M, Gonçalves F, Pereira R, Mendo S (2017) Uranium mining wastes: The use of the Fish Embryo Acute Toxicity Test (FET) test to evaluate toxicity and risk of environmental discharge. Sci Total Environ. 605–606:391–404

    Article  CAS  Google Scholar 

  • Macaskie LE, Bonthrone KM, Yong P, Goddard DT (2000) Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology 146:1855–1867

    Article  CAS  Google Scholar 

  • Matshusa K, Makgae M (2017) Prevention of future legacy sites in uranium mining and processing: The South African perspective. Ore Geol Rev 86:70–78

    Article  Google Scholar 

  • McGrath SP, Zhao J, Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides. Academic Press 1–56

    Google Scholar 

  • Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FMG (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58:1011–1022

    Article  CAS  Google Scholar 

  • Merkel B, Schipek M (2011) The new uranium mining boom: challenge and lessons learned. Springer. Berlin

    Google Scholar 

  • Molchanova I, Mikhailovskaya L, Antonov K, Pozolotina V, Antonova E (2014) Current assessment of integrated content of long-lived radionuclides in soils of the head part of the East Ural Radioactive Trace. J Environ Radioact 138:238–248

    Article  CAS  Google Scholar 

  • NABIR Primer (2003) Bioremediation of metals and radionuclides: what it is and how it works, 2nd edn. Lawrence Berkeley National Laboratory for U.S. DOE, Office of Biological and Environmental Research, Natural and Accelerated Bioremediation Research Program

    Google Scholar 

  • NEA-IEA (2015) Technology roadmap: nuclear energy. OECD/IEA, Paris

    Google Scholar 

  • Newsome L, Morris K, Lloyd JR (2014) The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem Geol 363:164–184

    Article  CAS  Google Scholar 

  • Nezami S, Malakouti MJ, Bahrami Samani A, Ghannadi Maragheh M (2016) Effect of low molecular weight organic acids on the uptake of 226Ra by corn (Zea mays L.) in a region of high natural radioactivity in Ramsar-Iran. J Environ Radioact 164:145–150

    Article  CAS  Google Scholar 

  • NRC (2012) Effluent releases from nuclear power plants and fuel-cycle facilities, analysis of cancer risks in populations near nuclear facilities: Phase I. National Research Council, National Academies Press (US), Washington, DC

    Google Scholar 

  • OECD-NEA (2014) Perceptions and realities in modern uranium mining – extended summary

    Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013) Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J Biol Sci 20:121–129

    Article  CAS  Google Scholar 

  • Pattanapipitpaisal P, Mabbett AN, Finlay JA, Beswick AJ, Paterson-Beedle M, Essa A, Wright J, Tolley MR, Badar U, Ahmed N, Hobman JL, Brown NL, Macaskie LE (2002) Reduction of Cr(VI) and bioaccumulation of chromium by gram positive and gram negative microorganisms not previously exposed to CR-Stress. Environ Technol 23:731–745

    Article  CAS  Google Scholar 

  • Pereira R, Barbosa S, Carvalho FP (2014) Uranium mining in Portugal: a review of the environmental legacies of the largest mines and environmental and human health impacts. Environ Geochem Health 36:285–301

    Article  CAS  Google Scholar 

  • Pinder JE, McLeod KW, Alberts JJ, Adriano DC, Corey JC (1984) Uptake of 244Cm, 238Pu and other radionuclides by trees inhabiting a contaminated flood plain. Health Phys 47:375–384

    Article  CAS  Google Scholar 

  • Pinheiro JC, Marques CR, Pinto G, Bouguerra S, Mendo S, Gomes NC, Gonçalves F, Rocha-Santos T, Duarte AC, Roembke J, Sousa JP, Ksibi M, Haddioui A, Pereira R (2013) The performance of Fraxinus angustifolia as a helper for metal phytoremediation programs and its relation to the endophytic bacterial communities. Geoderma 202:171–182

    Article  CAS  Google Scholar 

  • Prakash D, Gabani P, Chandel AK, Ronen Z, Singh OV (2013) Bioremediation: a genuine technology to remediate radionuclides from the environment. Microb Biotechnol 6:349–360

    Article  CAS  Google Scholar 

  • Prăvălie R (2014) Nuclear weapons tests and environmental consequences: A global perspective. Ambio 43:729–744

    Article  CAS  Google Scholar 

  • Rahman A, Nahar N, Nawani NN, Jass J, Desale P, Kapadnis BP, Hossain K, Saha AK, Ghosh S, Olsson B, Mandal A (2014) Isolation and characterization of a Lysinibacillus strain B1-CDA showing potential for bioremediation of arsenics from contaminated water. J Environ Sci Heal Part A 49:1349–1360

    Article  CAS  Google Scholar 

  • Ruggiero CE, Boukhalfa H, Forsythe JH, Lack JG, Hersman LE, Neu MP (2005) Actinide and metal toxicity to prospective bioremediation bacteria. Environ Microbiol 7:88–97

    Article  CAS  Google Scholar 

  • Salbu B (2013) Preface: uranium mining legacy issue in Central Asia. J Environ Radioact 123:1–2

    Article  CAS  Google Scholar 

  • Salem IB, Sghaier H, Trifi H, Heni S, Khwaldia K, Saidi M, Landoulsi A (2012) Isolation and characterization of a novel Micrococcus strain for bioremediation of strontium in radioactive residues. Afr J Microbiol Res 6:851–858

    Google Scholar 

  • Sasaki H, Shirato S, Tahara T, Sato K, Takenaka H (2013) Accumulation of radioactive cesium released from Fukushima Daiichi Nuclear Power Plant in terrestrial cyanobacteria Nostoc commune. Microbes Environ 28:466–469

    Article  Google Scholar 

  • Schenck LM, Youmans RA (2012) From start to finish: A historical review of nuclear arms control treaties and starting over with the new start. Cardozo J Int Comp Law 20

    Google Scholar 

  • Seeprasert P, Yoneda M, Shimada Y (2016) The influence of soil fungi on the sorption of cesium and strontium in the soil organic layer. Int J Environ Sci Dev 7

    Google Scholar 

  • Seier M, Zimmermann T (2014) Environmental impacts of decommissioning nuclear power plants: methodical challenges, case study, and implications. Int J Life Cycle Ass 19:1919–1932

    Article  CAS  Google Scholar 

  • Sharma S, Singh B, Manchanda VK (2015) Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut Res 22:946–962

    Article  CAS  Google Scholar 

  • Shukla KP, Singh NK, Sharma S (2010) Bioremediation: developments, current practices and perspectives. Genet Eng Biotechnol J:1–20

    Google Scholar 

  • Simpson MF, Law JD (2013) Nuclear fuel, reprocessing of. In: Nuclear energy. Springer, New York, pp 153–173

    Google Scholar 

  • Singh S, Fulzele DP, Kaushik CP (2016) Potential of Vetiveria zizanoides L. Nash for phytoremediation of plutonium (239Pu): Chelate assisted uptake and translocation. Ecotoxicol Environ Saf 132:140–144

    Article  CAS  Google Scholar 

  • Skoko B, Marović G, Babić D, Šoštarić M, Jukić M (2017) Plant uptake of 238U, 235U, 232Th, 226Ra, 210Pb and 40K from a coal ash and slag disposal site and control soil under field conditions: A preliminary study. J Environ Radioact 172:113–121

    Article  CAS  Google Scholar 

  • Smičiklas I, Šljivić-Ivanović M (2016) Radioactive contamination of the soil: Assessments of pollutants mobility with implication to remediation strategies. In: Larramendy ML, Soloneski S (eds) Environmental sciences, soil contamination-current consequences and further solutions. InTech, Rijeka, pp 253–276

    Google Scholar 

  • Smodiš B, Černe M, Jaćimović R, Benedik L (2015) Transfer of uranium and radium to Chinese cabbage from soil containing elevated levels of natural radionuclides. J Radioanal Nucl Chem 306:685–694

    Article  CAS  Google Scholar 

  • SNCNW (2016) Nuclear waste state-of-the-art report 2016 risks, uncertainties and future challenges, Stockholm

    Google Scholar 

  • Snyder DC, Delmore JE, Tranter T, Mann NR, Abbott ML, Olson JE (2012) Radioactive cesium isotope ratios as a tool for determining dispersal and re-dispersal mechanisms downwind from the Nevada Nuclear Security Site. J Environ Radioact 110:46–52

    Article  CAS  Google Scholar 

  • Stone MB, Stanford JB, Lyon JL, VanDerslice JA, Alder SC (2013) Childhood thyroid radioiodine exposure and subsequent infertility in the intermountain fallout cohort. Environ Health Persp 121:79

    Article  Google Scholar 

  • Sugiura Y, Kanasashi T, Ogata Y, Ozawa H, Takenaka C (2016) Radiocesium accumulation properties of Chengiopanax sciadophylloides. J Environ Radioact 151:250–257

    Article  CAS  Google Scholar 

  • Tang S, Liao S, Guo J, Song Z, Wang R, Zhou X (2011) Growth and cesium uptake responses of Phytolacca americana Linn. and Amaranthus cruentus L. grown on cesium contaminated soil to elevated CO2 or inoculation with a plant growth promoting rhizobacterium Burkholderia sp. D54, or in combination. J Hazard Mater 198:188–197

    Article  CAS  Google Scholar 

  • Tiwari G, Singh SP (2014) Application of bioremediation on solid waste management: A review. J Biorem Biodegrad 5:248

    Google Scholar 

  • Tomé V, Blanco Rodríguez P, Lozano JC (2009) The ability of Helianthus annuus L. and Brassica juncea to uptake and translocate natural uranium and 226Ra under different milieu conditions. Chemosphere 74:293–300

    Article  CAS  Google Scholar 

  • Tomioka N, Uchiyama H, Yagi O, Fujii T (1995) Kinetic studies on cesium transport in Rhodococcus erythropolis CS98 and Rhodococcus sp. strain CS402. Biosci Biotechnol. Biochem 59:2219–2222

    Article  CAS  Google Scholar 

  • Turner DR (2013) Nuclear facilities, decommissioning of. In: Tsoulfanidis N (ed) Nuclear energy: selected entries from the encyclopedia of sustainability science and technology. Springer, New York, pp 223–268

    Google Scholar 

  • UNEP (2001) Depleted uranium in Kosovo: Postconflict environmental assessment. United Nations Environment Programme, Imprimerie Chirat, France

    Google Scholar 

  • UNEP (2002) Depleted uranium in Serbia and Montenegro: Postconflict environmental assessment in the Federal Republic of Yugoslavia. United Nations Environment Programme, Imprimerie Chirat, France

    Google Scholar 

  • UNEP (2003a) Depleted uranium in Bosnia and Herzegovina: Postconflict environmental assessment. United Nations Environment Programme, Imprimerie Chirat, France

    Google Scholar 

  • UNEP (2003b) Environment in Iraq: UNEP progress report. United Nations Environment Programme, Geneva

    Google Scholar 

  • UNEP (2007) UNEP. Technical report on capacity-building for the assessment of depleted uranium in Iraq. United Nations Environmental Program, Geneva

    Google Scholar 

  • UNSCEAR (1993) Report to the general assembly, with scientific annexes-sources and effects of ionizing radiation. United Nations Publications, New York

    Google Scholar 

  • Vandenhove H (2013) Phytoremediation options for radioactively contaminated sites evaluated. Ann Nucl Ener 62:596–606

    Article  CAS  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Article  CAS  Google Scholar 

  • Victorova N, Voitesekhovitch O, Sorochinsky B, Vandenhove H, Konoplev A, Konopleva I (2000) Phytoremediation of Chernobyl contaminated land. Radiat Prot Dosim 92:59–64

    Article  CAS  Google Scholar 

  • Vinichuk M, Mårtensson A, Ericsson T, Rosén K (2013) Effect of arbuscular mycorrhizal (AM) fungi on 137Cs uptake by plants grown on different soils. J Environ Radioact 115:151–156

    Article  CAS  Google Scholar 

  • Waggitt P (2008) Uranium mining legacies remediation and renaissance development: an international overview. In: Merkel BJ, Hasche-Berger A (eds) Uranium, mining and hydrogeology. Springer, Cham, pp 11–18

    Chapter  Google Scholar 

  • Wang P, Du L, Tan Z, Su R, Li T (2017) Effects of organic acids and sylvite on phytoextraction of 241Am contaminated soil. Bull Environ Contam Toxicol 98:407–412

    Article  CAS  Google Scholar 

  • Wang X, Chen C, Wang J (2017a) Phytoremediation of strontium contaminated soil by Sorghum bicolor (L.) Moench and soil microbial community-level physiological profiles (CLPPs). Environ Sci Pollut Res 24:7668–7678

    Article  CAS  Google Scholar 

  • Wang X, Chen C, Wang J (2017b) Cs phytoremediation by Sorghum bicolor cultivated in soil and in hydroponic system. Int J Phytorem 19:402–412

    Article  CAS  Google Scholar 

  • Watanabe ME (1997) Phytoremediation on the brink of commercialization. Environ Sci Technol 31:182–186

    Article  Google Scholar 

  • Wendel CC, Oughton DH, Lind OC, Skipperud L, Fifield LK, Isaksson E, Tims SG, Salbu B (2013) Chronology of Pu isotopes and 236U in an Arctic ice core. Sci Total Environ 461–462:734–741

    Article  CAS  Google Scholar 

  • Wiesel L, Dubchak S, Turnau K, Broadley MR, White PJ (2015) Caesium inhibits the colonization of Medicago truncatula by arbuscular mycorrhizal fungi. J Environ Radioact 141:57–61

    Article  CAS  Google Scholar 

  • Williams KH, Bargar JR, Lloyd JR, Lovley DR (2013) Bioremediation of uranium-contaminated groundwater: a systems approach to subsurface biogeochemistry. Curr Opin Biotechnol 24:489–497

    Article  CAS  Google Scholar 

  • Winfield M, Jamison A, Wong R, Czajkowski P (2006) Nuclear power in Canada: an examination of risks, impacts and sustainability. https://www.pembina.org/reports/Nuclear_web.pdf

  • Wiszniewska A, Hanus-Fajerska E, Muszynska E, Ciarkowska K (2016) Natural organic amendments for improved phytoremediation of polluted soils: a review of recent progress. Pedosphere 26:1–12

    Article  Google Scholar 

  • Yamamoto M, Tomita J, Sakaguchi A, Ohtsuka Y, Hoshi M, Apsalikov K (2010) Uranium isotopes in well water samples as drinking sources in some settlements around the Semipalatinsk Nuclear Test Site, Kazakhstan. J Radioanal Nucl Chem 284:309–314

    Article  CAS  Google Scholar 

  • Yamashiro H, Abe Y, Fukuda T, Kino Y, Kawaguchi I, Kuwahara Y, Fukumoto M, Takahashi S, Suzuki M, Kobayashi J, Uematsu E, Tong B, Yamada T, Yoshida S, Sato E, Shinoda H, Sekine T, Isogai E, Fukumoto M (2013) Effects of radioactive caesium on bull testes after the Fukushima nuclear plant accident. Sci Rep 3:2850

    Article  Google Scholar 

  • Yoshida S, Muramatsu Y, Dvornik AM, Zhuchenko TA, Linkov I (2004) Equilibrium of radiocesium with stable cesium within the biological cycle of contaminated forest ecosystems. J Environ Radioact 75:301–313

    Article  CAS  Google Scholar 

  • Young M, Artsatbanov V, Beller HR, Chandra G, Chater KF, Dover LG, Goh EB, Kahan T, Kaprelyants AS, Kyrpides N, Lapidus A, Lowry SR, Lykidis A, Mahillon J, Markowitz V, Mavromatis K, Mukamolova GV, Oren A, Rokem JS, Smith MCM, Young DI, Greenblatt CL (2010) Genome sequence of the Fleming strain of Micrococcus luteus, a simple free-living actinobacterium. J Bacteriol 192:841–860

    Article  CAS  Google Scholar 

  • Zhang P, Idota Y, Yano K, Negishi M, Kawabata H, Arakawa H, Morimoto K, Tsuji A, Ogihara T (2014) Characterization of cesium uptake mediated by a potassium transport system of bacteria in a soil conditioner. Biol Pharm Bull 37:604–607

    Article  CAS  Google Scholar 

  • Zhao P, Zavarin M, Leif RN, Powell BA, Singleton MJ, Lindvall RE, Kersting AB (2011) Mobilization of actinides by dissolved organic compounds at the Nevada Test Site. Appl Geochem 26:308–318

    Article  CAS  Google Scholar 

  • Zhu YG, Smolders E (2000) Plant uptake of radiocaesium: a review of mechanisms, regulation and application. J Exp Bot 51:1635–1645

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Portuguese Foundation for Science and Technology (FCT), through National Funds (Ministry for Science and Education in Portugal), provided financial support to Joana Lourenço by means of a Post-Doc grant (SFRH/BPD/92554/2013). This work was also supported by the Strategic Funding UID/Multi/04423/2013 (CIIMAR) and UID/AMB/50017/2013 (CESAM) through national funds provided by FCT and European Regional Development Fund (ERDF), in the framework of the PT2020 Partnership Agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Lourenço .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lourenço, J., Mendo, S., Pereira, R. (2019). Rehabilitation of Radioactively Contaminated Soil: Use of Bioremediation/Phytoremediation Techniques. In: Gupta, D., Voronina, A. (eds) Remediation Measures for Radioactively Contaminated Areas. Springer, Cham. https://doi.org/10.1007/978-3-319-73398-2_8

Download citation

Publish with us

Policies and ethics