Rehabilitation of Radioactively Contaminated Soil: Use of Bioremediation/Phytoremediation Techniques



The release of radionuclides in the environment is of major concern. Radionuclides arise mainly from nuclear power production, nuclear accidents, nuclear weapons testing, uranium mining and processing and nuclear waste disposal. Remediation of the affected areas is urgently needed, since the presence of these contaminants represents a major human and environmental health concern. Bioremediation and phytoremediation have been considered the eco-friendly alternative to the environmentally problematic remediation of contaminated soils, recovering functions that make some future uses possible. Available studies demonstrate that both methodologies, combined or not with other chemical or physically-based strategies (to mitigate the availability of radionuclides), have the potential to be used inexpensively and effectively in the restoration of contaminated environments. In addition, bioremediation and phytoremediation are environment friendly procedures, and are therefore more accepted by regulatory bodies. In this chapter, the main problems associated to each type of radioactively contaminated site will be identified and the most relevant bioremediation and phytoremediation techniques to deal with this type of contamination, will be reviewed. Furthermore, the advantages and disadvantages of using such techniques will also be discussed with a perspective of identifying knowledge gaps and highlighting new approaches to deal with this challenging issue. The reasons for the existence of few applications in real scenarios of contamination will also be analyzed.


Bioremediation Phytoremediation Radionuclides Contamination Soil 



The Portuguese Foundation for Science and Technology (FCT), through National Funds (Ministry for Science and Education in Portugal), provided financial support to Joana Lourenço by means of a Post-Doc grant (SFRH/BPD/92554/2013). This work was also supported by the Strategic Funding UID/Multi/04423/2013 (CIIMAR) and UID/AMB/50017/2013 (CESAM) through national funds provided by FCT and European Regional Development Fund (ERDF), in the framework of the PT2020 Partnership Agreement.


  1. Achal V, Pan X, Zhang D (2012) Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Chemosphere 89:764–768CrossRefGoogle Scholar
  2. Aftab K, Akhtar K, Jabbar A, Bukhari IH, Noreen R (2013) Physico-chemical study for zinc removal and recovery onto native/chemically modified Aspergillus flavus NA9 from industrial effluent. Water Res 47:4238–4246CrossRefGoogle Scholar
  3. Aleksakhin RM (2009) Radioactive contamination as a type of soil degradation. Euras Soil Sci 42:1386–1396CrossRefGoogle Scholar
  4. Alexander M, Loehr RC (1992) Bioremediation review. Science 258:874CrossRefGoogle Scholar
  5. Amachi S, Minami K, Miyasaka I, Fukunaga S (2010) Ability of anaerobic microorganisms to associate with iodine: 125I tracer experiments using laboratory strains and enriched microbial communities from subsurface formation water. Chemosphere 79:349–354CrossRefGoogle Scholar
  6. Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, Dayvault R, Karp K, Marutzky S, Metzler DR, Peacock A, White DC, Lowe M, Lovley DR (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69:5884–5891CrossRefGoogle Scholar
  7. Arai S, Yonezawa Y, Okazaki N, Matsumoto F, Shibazaki C, Shimizu R, Yamada M, Adachi M, Tamada T, Kawamoto M, Tokunaga H, Ishibashi M, Blaber M, Tokunaga M, Kuroki R (2015) Structure of a highly acidic β-lactamase from the moderate halophile Chromohalobacter sp. 560 and the discovery of a Cs + − selective binding site. Acta Crystallogr Sect D Biol Crystallogr 71:541–554CrossRefGoogle Scholar
  8. Bem H, Bou-Rabee F (2004) Environmental and health consequences of depleted uranium use in the 1991 Gulf War. Environ Int 30:123–134CrossRefGoogle Scholar
  9. Benzerara K, Miot J, Morin G, Ona-Nguema G, Skouri-Panet F, Férard C (2011) Significance, mechanisms and environmental implications of microbial biomineralization. Comptes Rendus Geosci 343:160–167CrossRefGoogle Scholar
  10. Bleise A, Danesi PR, Burkart W (2003) Properties, use and health effects of depleted uranium (DU): a general overview. J Environ Radioact 64:93–112CrossRefGoogle Scholar
  11. Burger M (2012) The risks of depleted uranium contamination in post-conflict countries: Findings and lessons learned from UNEP field assessments. Assess Restoring Nat Resour Post-conflict Peacebuil 5:163Google Scholar
  12. Carlsen TM, Peterson LE, Ulsh BA, Werner CA, Purvis KL, Sharber AC (2001) Radionuclide contamination at Kazakhstan’s Semipalatinsk test site: Implications on human and ecological health. Hum Ecol Risk Assess An Int J 7:943–955CrossRefGoogle Scholar
  13. Carvalho F, Madruga M, Reis M, Alves J, Oliveira J, Gouveia J, Silva L (2007) Radioactivity in the environment around past radium and uranium mining sites of Portugal. J Environ Radioact 96:39–46CrossRefGoogle Scholar
  14. Chen B, Jakobsen I, Roos P, Zhu YG (2005a) Effects of the mycorrhizal fungus Glomus intraradices on uranium uptake and accumulation by Medicago truncatula L. from uranium-contaminated soil. Plant Soil 275:349–359CrossRefGoogle Scholar
  15. Chen B, Zhu YG, Zhang X, Jakobsen I (2005b) The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil. Environ Sci Pollut Res Int 12:325–331CrossRefGoogle Scholar
  16. Chen B, Roos P, Zhu YG, Jakobsen I (2008) Arbuscular mycorrhizas contribute to phytostabilization of uranium in uranium mining tailings. J Environ Radioact 99:801–810CrossRefGoogle Scholar
  17. Christensen GC, Malyshev SV, Salbu B, Romanov GN, Selnais TD, Oughton D, Glagolenko YV, Amundsen I, Liv Rudjord A, Bjerk TO, Lind B (1995) Radioactive contamination in the environment of the nuclear enterprise Mayak, PA. Results from the joint Russian-Norwegian field work in 1994. The nuclear enterprise Mayak, PA. In: International conference on environmental radioactivity in the Arctic, pp 21–25Google Scholar
  18. Chung AP, Sousa T, Pereira A, Morais PV (2014) Microorganisms – tools for bioremediation of uranium contaminated environments. Proc Earth Planet Sci 8:53–58CrossRefGoogle Scholar
  19. Cook LL, Inouye RS, McGonigle TP (2009) Evaluation of four grasses for use in phytoremediation of Cs-contaminated arid land soil. Plant Soil 324:169–184CrossRefGoogle Scholar
  20. Das M, Adholeya A (2012) Role of microorganisms in remediation of contaminated soil. In: Satyanarayana T, Johri BN (eds) Microorganisms in environmental management: microbes and environment. Springer, Dordrecht, pp 81–111Google Scholar
  21. Das S, Dash HR, Chakraborty J (2016) Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Appl Microbiol Biotechnol 100:2967–2984CrossRefGoogle Scholar
  22. Dash HR, Das S (2015) Bioremediation of inorganic mercury through volatilization and biosorption by transgenic Bacillus cereus BW-03(pPW-05). Int Biodeterior Biodeg 103:179–185CrossRefGoogle Scholar
  23. Dighton J, Clint GM, Poskitt J (1991) Uptake and accumulation of 137Cs by upland grassland soil fungi: a potential pool of Cs immobilization. Mycol Res 95:1052–1056CrossRefGoogle Scholar
  24. Dighton J, Tugay T, Zhdanova N (2008) Fungi and ionizing radiation from radionuclides. FEMS Microbiol Lett 281:109–120CrossRefGoogle Scholar
  25. Dixit R, Wasiullah E, Malaviya D, Pandiyan K, Singh U, Sahu A, Shukla R, Singh B, Rai J, Sharma P, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212CrossRefGoogle Scholar
  26. Dupré de Boulois H, Joner EJ, Leyval C, Jakobsen I, Chen BD, Roos P, Thiry Y, Rufyikiri G, Delvaux B, Declerck S (2008) Impact of arbuscular mycorrhizal fungi on uranium accumulation by plants. J Environ Radioact 99:775–784CrossRefGoogle Scholar
  27. Dushenkov S (2003) Trends in phytoremediation of radionuclides. Plant Soil 249:167–175CrossRefGoogle Scholar
  28. Dushenkov S, Mikheev A, Prokhnevsky A, Ruchko M, Boris S (1999) Phytoremediation of radiocesium-contaminated soil in the vicinity of Chernobyl, Ukraine. Environ Sci Technol 33:469–475CrossRefGoogle Scholar
  29. Eapen S, Singh S, Thorat V, Kaushik CP, Raj K, D’Souza SF (2006) Phytoremediation of radiostrontium (90Sr) and radiocesium (137Cs) using giant milky weed (Calotropis gigantea R.Br.) plants. Chemosphere 65:2071–2073CrossRefGoogle Scholar
  30. Ebbs SD, Brady DJ, Kochian LV (1998) Role of uranium speciation in the uptake and translocation of uranium by plants. J Exp Bot 49:1183–1190CrossRefGoogle Scholar
  31. Elekwachi C, Andresen J, Hodgman TC (2014) Global use of bioremediation technologies for decontamination of ecosystems. J Biorem Biodegrad 5:1–9CrossRefGoogle Scholar
  32. Endo S, Kajimoto T, Shizuma K (2013) Paddy-field contamination with 134Cs and 137Cs due to Fukushima Dai-ichi Nuclear Power Plant accident and soil-to-rice transfer coefficients. J Environ Radioact 116:59–64CrossRefGoogle Scholar
  33. Entry JA, Vance NC, Hamilton MA, Zabowski D, Watrud LS, Adriano DC (1996) Phytoremediation of soil contaminated with low concentrations of radionuclides. Water Air Soil Pollut 88:167–176Google Scholar
  34. Evrard O, Chartin C, Onda Y, Lepage H, Cerdan O, Lefèvre I, Ayrault S (2014) Renewed soil erosion and remobilisation of radioactive sediment in Fukushima coastal rivers after the 2013 Typhoons. Sci Rep 4:4574CrossRefGoogle Scholar
  35. Evseeva T, Belykh E, Geras’kin S, Majstrenko T (2012) Estimation of radioactive contamination of soils from the “Balapan” and the “Experimental field” technical areas of the Semipalatinsk nuclear test site. J Environ Radioact 109:52–59CrossRefGoogle Scholar
  36. Fairlie I (2014) A hypothesis to explain childhood cancers near nuclear power plants. J Environ Radioact 133:10–17CrossRefGoogle Scholar
  37. Fesenko S, Howard BJ (2012) Guidelines for remediation strategies to reduce the radiological consequences of environmental contamination. International Atomic Energy Agency, ViennaGoogle Scholar
  38. Francis AJ, Nancharaiah YV (2015) In situ and ex situ bioremediation of radionuclide-contaminated soils at nuclear and norm sites. In: Velzen Leo van BT (ed) Environmental remediation and restoration of contaminated nuclear and norm sites, in: Woodhead Publishing Series in Energy. Woodhead Publishing, Cambridge, pp 185–236CrossRefGoogle Scholar
  39. Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28CrossRefGoogle Scholar
  40. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643CrossRefGoogle Scholar
  41. Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163:475–510CrossRefGoogle Scholar
  42. Gouthu S, Arie T, Ambe S, Yamaguchi I (1997) Screening of plant species for comparative uptake abilities of radioactive Co, Rb, Sr and Cs from soil. J Radioanal Nucl Chem 22:247–251CrossRefGoogle Scholar
  43. Groudev S, Spasova I, Nicolova M, Georgiev P (2010) In situ bioremediation of contaminated soils in uranium deposits. Hydrometallurgy 104:518–523CrossRefGoogle Scholar
  44. Ha J, Gélabert A, Spormann AM, Brown GE (2010) Role of extracellular polymeric substances in metal ion complexation on Shewanella oneidensis: Batch uptake, thermodynamic modeling, ATR-FTIR, and EXAFS study. Geochim Cosmochim Acta 74:1–15CrossRefGoogle Scholar
  45. Handley-Sidhu S, Keith-Roach MJ, Lloyd JR, Vaughan DJ (2010) A review of the environmental corrosion, fate and bioavailability of munitions grade depleted uranium. Sci Total Environ 408:5690–5700CrossRefGoogle Scholar
  46. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Micro 9:177–192CrossRefGoogle Scholar
  47. Hazen TC, Tabak HH (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides: 2. Field research on bioremediation of metals and radionuclides. Rev Environ Sci Bio/Technol 4:157–183CrossRefGoogle Scholar
  48. Huang RH, Lu YM, Yang HL, Huang W, Chen K (2016) Effects of arbuscular mycorrhizal fungi on caesium accumulation and the ascorbate-glutathione cycle of Sorghum halepense. Sci Asia 42:323–331CrossRefGoogle Scholar
  49. IAEA (1988) The radiological accidents in Goiania, ViennaGoogle Scholar
  50. IAEA (1996) Health and environmental aspects of nuclear fuel cycle facilities p /r\, nuclear fuel cycle and materials section. International Atomic Energy Agency, ViennaGoogle Scholar
  51. IAEA (1999) Technologies for Remediation of Radioactively Contaminated Sites, ViennaGoogle Scholar
  52. IAEA (2000) Management of radioactive waste from the use of radionuclides in medicine, ViennaGoogle Scholar
  53. IAEA (2001) Present and future environmental impact of the Chernoby, ViennaGoogle Scholar
  54. IAEA (2002a) Monitoring and surveillance of residues from the mining and milling of uranium and thorium, Vienna. IAEAGoogle Scholar
  55. IAEA (2002b) Environmental aspects based on operational performance of nuclear fuel fabrication facilities, Nuclear Fuel Cycle and Materials Section, International Atomic Energy Agency, ViennaGoogle Scholar
  56. IAEA (2003) Radiological Conditions in Areas of Kuwait with Residues of Depleted Uranium, ViennaGoogle Scholar
  57. IAEA (2005) Environmental contamination from uranium production facilities and their remediation. In: Proceedings of an international work held on Lisbon, Portugal. 11–13 February 2004Google Scholar
  58. IAEA (2006) Environmental Consequences of the Chernobyl Accident and their Remediation: Twenty Years of Experience, ViennaGoogle Scholar
  59. IAEA (2008) Spent fuel reprocessing options. International Atomic Energy Agency, ViennaGoogle Scholar
  60. IAEA (2009) Establishment of uranium mining and processing operations in the context of sustainable development. International Atomic Energy Agency, ViennaGoogle Scholar
  61. IAEA (2010) Best practice in environmental management of uranium mining. International Atomic Energy Agency, ViennaGoogle Scholar
  62. IAEA (2011) International mission on remediation of large contaminated areas off-site Fukushima Daiichi Nuclear Power Plant – final report, Vienna.Google Scholar
  63. IAEA (2012) Efficient water management in water cooled reactors. In: IAEA nuclear energy series no. NP-T-2.6, Vienna.Google Scholar
  64. IAEA (2014) Radiation protection after the Fukushima Daiichi Accident: promoting confidence and understanding, Vienna.Google Scholar
  65. IAEA (2017) General distribution international status and prospects for nuclear powerGoogle Scholar
  66. Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A, Benotmane MA, Leys N, Vallaeys T, Lapidus A, Monchy S, Médigue C, Taghavi S, McCorkle S, Dunn J, van der Lelie D, Mergeay M (2010) The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 5:e10433CrossRefGoogle Scholar
  67. Jiang GCT, Aschner M (2009) Depleted uranium. In: Handbook of toxicology of chemical warfare agents. Academic, Amsterdam, pp 393–406CrossRefGoogle Scholar
  68. Joshi PK, Swarup A, Maheshwari S, Kumar R, Singh N (2011) Bioremediation of heavy metals in liquid media through fungi isolated from contaminated sources. Ind J Microbiol 51:482–487CrossRefGoogle Scholar
  69. Kadyrzhanov KK, Khazhekber S, Solodukhin VP, Lukashenko SN, Kazachevskiy IV, Rofer C, Poznyak VL, Knyazev BB, Knatova MK, Nazarenko LM, Yakushev EM (2005) Plutonium at the Semipalatinsk Nuclear Test Site (SNTS). J Radioanal Nucl Chem 263:229–234CrossRefGoogle Scholar
  70. Kaewtubtim P, Meeinkuirt W, Seepom S, Pichtel J (2017) Radionuclide ((226)Ra, (232)Th, (40)K) accumulation among plant species in mangrove ecosystems of Pattani Bay, Thailand. Mar Pollut Bull 115:391–400CrossRefGoogle Scholar
  71. Kato H, Onda Y, Teramage M (2012) Depth distribution of 137Cs, 134Cs, and 131I in soil profile after Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 111:59–64CrossRefGoogle Scholar
  72. Kumar R, Singh S, Singh OV (2007) Bioremediation of radionuclides: Emerging technologies. Omi A J Integr Biol 11:295–304CrossRefGoogle Scholar
  73. Lachner J, Christl M, Alfimov V, Hajdas I, Kubik PW, Schulze-König T, Wacker L, Synal HA (2014) 41Ca, 14C and 10Be concentrations in coral sand from the Bikini atoll. J Environ Radioact 129:68–72CrossRefGoogle Scholar
  74. Lasat MM, Fuhrmann M, Ebbs SD, Cornish JE, Kochian LV (1998) Phytoremediation of a radiocesium-contaminated soil: Evaluation of cesium-137 bioaccumulation in the shoots of three plant species. J Environ Qual 27:165–169CrossRefGoogle Scholar
  75. Lee JH (2013) An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioprocess Eng 18:431–439CrossRefGoogle Scholar
  76. Lee SH, Kim EY, Hyun S, Kim JG (2009) Metal availability in heavy metal-contaminated open burning and open detonation soil: Assessment using soil enzymes, earthworms, and chemical extractions. J Hazard Mater 170:382–388CrossRefGoogle Scholar
  77. Li X, Ding C, Liao J, Lan T, Li F, Zhang D, Yang J, Yang Y, Luo S, Tang J, Liu N (2014) Biosorption of uranium on Bacillus sp. dwc-2: preliminary investigation on mechanism. J Environ Radioact 135:6–12CrossRefGoogle Scholar
  78. Lloyd JR, Sole VA, Van Praagh CV, Lovley DR (2000) Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Appl Environ Microbiol 66:3743–3749.CrossRefGoogle Scholar
  79. Lourenço J, Pereira RO, Silva AC, Morgado JM, Carvalho FP, Oliveira JM, Malta MP, Paiva AA, Mendo SA, Gonçalves FJ (2011) Genotoxic endpoints in the earthworms sub-lethal assay to evaluate natural soils contaminated by metals and radionuclides. J Hazard Mater 186:788–795CrossRefGoogle Scholar
  80. Lourenço J, Pereira R, Silva A, Carvalho F, Oliveira J, Malta M, Paiva A, Gonçalves F, Mendo S (2012) Evaluation of the sensitivity of genotoxicity and cytotoxicity endpoints in earthworms exposed in situ to uranium mining wastes. Ecotoxicol Environ Saf 75:46–54CrossRefGoogle Scholar
  81. Lourenço J, Pereira R, Gonçalves F, Mendo S (2013a) Metal bioaccumulation, genotoxicity and gene expression in the European wood mouse (Apodemus sylvaticus) inhabiting an abandoned uranium mining area. Sci Total Environ 443:673–680CrossRefGoogle Scholar
  82. Lourenço J, Pereira R, Pinto F, Caetano T, Silva A, Carvalheiro T, Guimarães A, Gonçalves F, Paiva A, Mendo S (2013b) Biomonitoring a human population inhabiting nearby a deactivated uranium mine. Toxicology 305:89–98CrossRefGoogle Scholar
  83. Lourenço J, Mendo S, Pereira R (2016) Radioactively contaminated areas: Bioindicator species and biomarkers of effect in an early warning scheme for a preliminary risk assessment. J Hazard Mater 317:503–542CrossRefGoogle Scholar
  84. Lourenço J, Marques S, Carvalho FP, Oliveira J, Malta M, Santos M, Gonçalves F, Pereira R, Mendo S (2017) Uranium mining wastes: The use of the Fish Embryo Acute Toxicity Test (FET) test to evaluate toxicity and risk of environmental discharge. Sci Total Environ. 605–606:391–404CrossRefGoogle Scholar
  85. Macaskie LE, Bonthrone KM, Yong P, Goddard DT (2000) Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology 146:1855–1867CrossRefGoogle Scholar
  86. Matshusa K, Makgae M (2017) Prevention of future legacy sites in uranium mining and processing: The South African perspective. Ore Geol Rev 86:70–78CrossRefGoogle Scholar
  87. McGrath SP, Zhao J, Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides. Academic Press 1–56Google Scholar
  88. Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FMG (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58:1011–1022CrossRefGoogle Scholar
  89. Merkel B, Schipek M (2011) The new uranium mining boom: challenge and lessons learned. Springer. BerlinGoogle Scholar
  90. Molchanova I, Mikhailovskaya L, Antonov K, Pozolotina V, Antonova E (2014) Current assessment of integrated content of long-lived radionuclides in soils of the head part of the East Ural Radioactive Trace. J Environ Radioact 138:238–248CrossRefGoogle Scholar
  91. NABIR Primer (2003) Bioremediation of metals and radionuclides: what it is and how it works, 2nd edn. Lawrence Berkeley National Laboratory for U.S. DOE, Office of Biological and Environmental Research, Natural and Accelerated Bioremediation Research ProgramGoogle Scholar
  92. NEA-IEA (2015) Technology roadmap: nuclear energy. OECD/IEA, ParisGoogle Scholar
  93. Newsome L, Morris K, Lloyd JR (2014) The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem Geol 363:164–184CrossRefGoogle Scholar
  94. Nezami S, Malakouti MJ, Bahrami Samani A, Ghannadi Maragheh M (2016) Effect of low molecular weight organic acids on the uptake of 226Ra by corn (Zea mays L.) in a region of high natural radioactivity in Ramsar-Iran. J Environ Radioact 164:145–150CrossRefGoogle Scholar
  95. NRC (2012) Effluent releases from nuclear power plants and fuel-cycle facilities, analysis of cancer risks in populations near nuclear facilities: Phase I. National Research Council, National Academies Press (US), Washington, DCGoogle Scholar
  96. OECD-NEA (2014) Perceptions and realities in modern uranium mining – extended summaryGoogle Scholar
  97. Oves M, Khan MS, Zaidi A (2013) Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J Biol Sci 20:121–129CrossRefGoogle Scholar
  98. Pattanapipitpaisal P, Mabbett AN, Finlay JA, Beswick AJ, Paterson-Beedle M, Essa A, Wright J, Tolley MR, Badar U, Ahmed N, Hobman JL, Brown NL, Macaskie LE (2002) Reduction of Cr(VI) and bioaccumulation of chromium by gram positive and gram negative microorganisms not previously exposed to CR-Stress. Environ Technol 23:731–745CrossRefGoogle Scholar
  99. Pereira R, Barbosa S, Carvalho FP (2014) Uranium mining in Portugal: a review of the environmental legacies of the largest mines and environmental and human health impacts. Environ Geochem Health 36:285–301CrossRefGoogle Scholar
  100. Pinder JE, McLeod KW, Alberts JJ, Adriano DC, Corey JC (1984) Uptake of 244Cm, 238Pu and other radionuclides by trees inhabiting a contaminated flood plain. Health Phys 47:375–384CrossRefGoogle Scholar
  101. Pinheiro JC, Marques CR, Pinto G, Bouguerra S, Mendo S, Gomes NC, Gonçalves F, Rocha-Santos T, Duarte AC, Roembke J, Sousa JP, Ksibi M, Haddioui A, Pereira R (2013) The performance of Fraxinus angustifolia as a helper for metal phytoremediation programs and its relation to the endophytic bacterial communities. Geoderma 202:171–182CrossRefGoogle Scholar
  102. Prakash D, Gabani P, Chandel AK, Ronen Z, Singh OV (2013) Bioremediation: a genuine technology to remediate radionuclides from the environment. Microb Biotechnol 6:349–360CrossRefGoogle Scholar
  103. Prăvălie R (2014) Nuclear weapons tests and environmental consequences: A global perspective. Ambio 43:729–744CrossRefGoogle Scholar
  104. Rahman A, Nahar N, Nawani NN, Jass J, Desale P, Kapadnis BP, Hossain K, Saha AK, Ghosh S, Olsson B, Mandal A (2014) Isolation and characterization of a Lysinibacillus strain B1-CDA showing potential for bioremediation of arsenics from contaminated water. J Environ Sci Heal Part A 49:1349–1360CrossRefGoogle Scholar
  105. Ruggiero CE, Boukhalfa H, Forsythe JH, Lack JG, Hersman LE, Neu MP (2005) Actinide and metal toxicity to prospective bioremediation bacteria. Environ Microbiol 7:88–97CrossRefGoogle Scholar
  106. Salbu B (2013) Preface: uranium mining legacy issue in Central Asia. J Environ Radioact 123:1–2CrossRefGoogle Scholar
  107. Salem IB, Sghaier H, Trifi H, Heni S, Khwaldia K, Saidi M, Landoulsi A (2012) Isolation and characterization of a novel Micrococcus strain for bioremediation of strontium in radioactive residues. Afr J Microbiol Res 6:851–858Google Scholar
  108. Sasaki H, Shirato S, Tahara T, Sato K, Takenaka H (2013) Accumulation of radioactive cesium released from Fukushima Daiichi Nuclear Power Plant in terrestrial cyanobacteria Nostoc commune. Microbes Environ 28:466–469CrossRefGoogle Scholar
  109. Schenck LM, Youmans RA (2012) From start to finish: A historical review of nuclear arms control treaties and starting over with the new start. Cardozo J Int Comp Law 20Google Scholar
  110. Seeprasert P, Yoneda M, Shimada Y (2016) The influence of soil fungi on the sorption of cesium and strontium in the soil organic layer. Int J Environ Sci Dev 7Google Scholar
  111. Seier M, Zimmermann T (2014) Environmental impacts of decommissioning nuclear power plants: methodical challenges, case study, and implications. Int J Life Cycle Ass 19:1919–1932CrossRefGoogle Scholar
  112. Sharma S, Singh B, Manchanda VK (2015) Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut Res 22:946–962CrossRefGoogle Scholar
  113. Shukla KP, Singh NK, Sharma S (2010) Bioremediation: developments, current practices and perspectives. Genet Eng Biotechnol J:1–20Google Scholar
  114. Simpson MF, Law JD (2013) Nuclear fuel, reprocessing of. In: Nuclear energy. Springer, New York, pp 153–173Google Scholar
  115. Singh S, Fulzele DP, Kaushik CP (2016) Potential of Vetiveria zizanoides L. Nash for phytoremediation of plutonium (239Pu): Chelate assisted uptake and translocation. Ecotoxicol Environ Saf 132:140–144CrossRefGoogle Scholar
  116. Skoko B, Marović G, Babić D, Šoštarić M, Jukić M (2017) Plant uptake of 238U, 235U, 232Th, 226Ra, 210Pb and 40K from a coal ash and slag disposal site and control soil under field conditions: A preliminary study. J Environ Radioact 172:113–121CrossRefGoogle Scholar
  117. Smičiklas I, Šljivić-Ivanović M (2016) Radioactive contamination of the soil: Assessments of pollutants mobility with implication to remediation strategies. In: Larramendy ML, Soloneski S (eds) Environmental sciences, soil contamination-current consequences and further solutions. InTech, Rijeka, pp 253–276Google Scholar
  118. Smodiš B, Černe M, Jaćimović R, Benedik L (2015) Transfer of uranium and radium to Chinese cabbage from soil containing elevated levels of natural radionuclides. J Radioanal Nucl Chem 306:685–694CrossRefGoogle Scholar
  119. SNCNW (2016) Nuclear waste state-of-the-art report 2016 risks, uncertainties and future challenges, StockholmGoogle Scholar
  120. Snyder DC, Delmore JE, Tranter T, Mann NR, Abbott ML, Olson JE (2012) Radioactive cesium isotope ratios as a tool for determining dispersal and re-dispersal mechanisms downwind from the Nevada Nuclear Security Site. J Environ Radioact 110:46–52CrossRefGoogle Scholar
  121. Stone MB, Stanford JB, Lyon JL, VanDerslice JA, Alder SC (2013) Childhood thyroid radioiodine exposure and subsequent infertility in the intermountain fallout cohort. Environ Health Persp 121:79CrossRefGoogle Scholar
  122. Sugiura Y, Kanasashi T, Ogata Y, Ozawa H, Takenaka C (2016) Radiocesium accumulation properties of Chengiopanax sciadophylloides. J Environ Radioact 151:250–257CrossRefGoogle Scholar
  123. Tang S, Liao S, Guo J, Song Z, Wang R, Zhou X (2011) Growth and cesium uptake responses of Phytolacca americana Linn. and Amaranthus cruentus L. grown on cesium contaminated soil to elevated CO2 or inoculation with a plant growth promoting rhizobacterium Burkholderia sp. D54, or in combination. J Hazard Mater 198:188–197CrossRefGoogle Scholar
  124. Tiwari G, Singh SP (2014) Application of bioremediation on solid waste management: A review. J Biorem Biodegrad 5:248Google Scholar
  125. Tomé V, Blanco Rodríguez P, Lozano JC (2009) The ability of Helianthus annuus L. and Brassica juncea to uptake and translocate natural uranium and 226Ra under different milieu conditions. Chemosphere 74:293–300CrossRefGoogle Scholar
  126. Tomioka N, Uchiyama H, Yagi O, Fujii T (1995) Kinetic studies on cesium transport in Rhodococcus erythropolis CS98 and Rhodococcus sp. strain CS402. Biosci Biotechnol. Biochem 59:2219–2222CrossRefGoogle Scholar
  127. Turner DR (2013) Nuclear facilities, decommissioning of. In: Tsoulfanidis N (ed) Nuclear energy: selected entries from the encyclopedia of sustainability science and technology. Springer, New York, pp 223–268Google Scholar
  128. UNEP (2001) Depleted uranium in Kosovo: Postconflict environmental assessment. United Nations Environment Programme, Imprimerie Chirat, FranceGoogle Scholar
  129. UNEP (2002) Depleted uranium in Serbia and Montenegro: Postconflict environmental assessment in the Federal Republic of Yugoslavia. United Nations Environment Programme, Imprimerie Chirat, FranceGoogle Scholar
  130. UNEP (2003a) Depleted uranium in Bosnia and Herzegovina: Postconflict environmental assessment. United Nations Environment Programme, Imprimerie Chirat, FranceGoogle Scholar
  131. UNEP (2003b) Environment in Iraq: UNEP progress report. United Nations Environment Programme, GenevaGoogle Scholar
  132. UNEP (2007) UNEP. Technical report on capacity-building for the assessment of depleted uranium in Iraq. United Nations Environmental Program, GenevaGoogle Scholar
  133. UNSCEAR (1993) Report to the general assembly, with scientific annexes-sources and effects of ionizing radiation. United Nations Publications, New YorkGoogle Scholar
  134. Vandenhove H (2013) Phytoremediation options for radioactively contaminated sites evaluated. Ann Nucl Ener 62:596–606CrossRefGoogle Scholar
  135. Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794CrossRefGoogle Scholar
  136. Victorova N, Voitesekhovitch O, Sorochinsky B, Vandenhove H, Konoplev A, Konopleva I (2000) Phytoremediation of Chernobyl contaminated land. Radiat Prot Dosim 92:59–64CrossRefGoogle Scholar
  137. Vinichuk M, Mårtensson A, Ericsson T, Rosén K (2013) Effect of arbuscular mycorrhizal (AM) fungi on 137Cs uptake by plants grown on different soils. J Environ Radioact 115:151–156CrossRefGoogle Scholar
  138. Waggitt P (2008) Uranium mining legacies remediation and renaissance development: an international overview. In: Merkel BJ, Hasche-Berger A (eds) Uranium, mining and hydrogeology. Springer, Cham, pp 11–18CrossRefGoogle Scholar
  139. Wang P, Du L, Tan Z, Su R, Li T (2017) Effects of organic acids and sylvite on phytoextraction of 241Am contaminated soil. Bull Environ Contam Toxicol 98:407–412CrossRefGoogle Scholar
  140. Wang X, Chen C, Wang J (2017a) Phytoremediation of strontium contaminated soil by Sorghum bicolor (L.) Moench and soil microbial community-level physiological profiles (CLPPs). Environ Sci Pollut Res 24:7668–7678CrossRefGoogle Scholar
  141. Wang X, Chen C, Wang J (2017b) Cs phytoremediation by Sorghum bicolor cultivated in soil and in hydroponic system. Int J Phytorem 19:402–412CrossRefGoogle Scholar
  142. Watanabe ME (1997) Phytoremediation on the brink of commercialization. Environ Sci Technol 31:182–186CrossRefGoogle Scholar
  143. Wendel CC, Oughton DH, Lind OC, Skipperud L, Fifield LK, Isaksson E, Tims SG, Salbu B (2013) Chronology of Pu isotopes and 236U in an Arctic ice core. Sci Total Environ 461–462:734–741CrossRefGoogle Scholar
  144. Wiesel L, Dubchak S, Turnau K, Broadley MR, White PJ (2015) Caesium inhibits the colonization of Medicago truncatula by arbuscular mycorrhizal fungi. J Environ Radioact 141:57–61CrossRefGoogle Scholar
  145. Williams KH, Bargar JR, Lloyd JR, Lovley DR (2013) Bioremediation of uranium-contaminated groundwater: a systems approach to subsurface biogeochemistry. Curr Opin Biotechnol 24:489–497CrossRefGoogle Scholar
  146. Winfield M, Jamison A, Wong R, Czajkowski P (2006) Nuclear power in Canada: an examination of risks, impacts and sustainability.
  147. Wiszniewska A, Hanus-Fajerska E, Muszynska E, Ciarkowska K (2016) Natural organic amendments for improved phytoremediation of polluted soils: a review of recent progress. Pedosphere 26:1–12CrossRefGoogle Scholar
  148. Yamamoto M, Tomita J, Sakaguchi A, Ohtsuka Y, Hoshi M, Apsalikov K (2010) Uranium isotopes in well water samples as drinking sources in some settlements around the Semipalatinsk Nuclear Test Site, Kazakhstan. J Radioanal Nucl Chem 284:309–314CrossRefGoogle Scholar
  149. Yamashiro H, Abe Y, Fukuda T, Kino Y, Kawaguchi I, Kuwahara Y, Fukumoto M, Takahashi S, Suzuki M, Kobayashi J, Uematsu E, Tong B, Yamada T, Yoshida S, Sato E, Shinoda H, Sekine T, Isogai E, Fukumoto M (2013) Effects of radioactive caesium on bull testes after the Fukushima nuclear plant accident. Sci Rep 3:2850CrossRefGoogle Scholar
  150. Yoshida S, Muramatsu Y, Dvornik AM, Zhuchenko TA, Linkov I (2004) Equilibrium of radiocesium with stable cesium within the biological cycle of contaminated forest ecosystems. J Environ Radioact 75:301–313CrossRefGoogle Scholar
  151. Young M, Artsatbanov V, Beller HR, Chandra G, Chater KF, Dover LG, Goh EB, Kahan T, Kaprelyants AS, Kyrpides N, Lapidus A, Lowry SR, Lykidis A, Mahillon J, Markowitz V, Mavromatis K, Mukamolova GV, Oren A, Rokem JS, Smith MCM, Young DI, Greenblatt CL (2010) Genome sequence of the Fleming strain of Micrococcus luteus, a simple free-living actinobacterium. J Bacteriol 192:841–860CrossRefGoogle Scholar
  152. Zhang P, Idota Y, Yano K, Negishi M, Kawabata H, Arakawa H, Morimoto K, Tsuji A, Ogihara T (2014) Characterization of cesium uptake mediated by a potassium transport system of bacteria in a soil conditioner. Biol Pharm Bull 37:604–607CrossRefGoogle Scholar
  153. Zhao P, Zavarin M, Leif RN, Powell BA, Singleton MJ, Lindvall RE, Kersting AB (2011) Mobilization of actinides by dissolved organic compounds at the Nevada Test Site. Appl Geochem 26:308–318CrossRefGoogle Scholar
  154. Zhu YG, Smolders E (2000) Plant uptake of radiocaesium: a review of mechanisms, regulation and application. J Exp Bot 51:1635–1645CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biology & CESAMUniversity of AveiroAveiroPortugal
  2. 2.Department of Biology & GreenUPortoFaculty of Sciences of the University of PortoPortoPortugal

Personalised recommendations