Biological, Chemical and Nanosorption Approaches in Remediation of Metal Wastes



Metal and radioactive wastes are generated from industrial, domestic and anthropogenic activities. Management of such wastes is a challenging ecological task. Several steps like minimization, pretreatment, sorption, characterization etc. needs been done before the final disposal of these wastes. Absorption and adsorption have been successfully employed in removal and remediation of various pollutants such as heavy metals and radionuclides waste materials from the contaminated sites. Different types of adsorbents are used in the process, which vary with the metals. Among them, biological, chemical and nanosorption methods are well known and are exploited for environmental remediation. In biological method different life forms like plants, algae, fungi and bacteria are effectively used. Chemical approaches require the use of different chemicals and chemical-conjugates as functional adsorbents. Nanosorption is a recent technique, where nanoparticles, nanocomposites, core/shell nanoparticles as well as nanotubes are employed as adsorbent for removal, transformation, sorption and detection of all types of pollutants including noxious radioactive wastes from soil, air and water.


Remediation Biological Chemical Nanosorption Metal Radioactive Wastes 


  1. Abdel RO, Rahman HA, Hung YT (2011) Liquid radioactive wastes treatment: a review. Water 3:551–565CrossRefGoogle Scholar
  2. Addour L, Belhocine D, Boudries N, Comeau Y, Pauss A, Mamer N (1999) Zinc uptake by Streptomyces rimosus biomass using a packed-bed column. J Chem Technol Biotechnol 74:1089–1095CrossRefGoogle Scholar
  3. Aksu Z, Sag Y, Kutsal T (1992) The biosorption of copper (II) by C. vulgaris and Z. ramigera. Environ Technol 13:579–586CrossRefGoogle Scholar
  4. Awual RM, Yaita T, El-Safty SA, Shiwaku H, Okamoto Y, Suzuki S (2013) Investigation of palladium(II) detection and recovery using ligand modified conjugate adsorbent. Chem Eng J 222:172–179CrossRefGoogle Scholar
  5. Awual MR, Rahman IMM, Yaita T, Khaleque MA, Ferdows M (2014) PH dependent cu(II) and Pd(II) ions detection and removal from aqueous media by an efficient mesoporous adsorbent. Chem Eng J 236:100–109CrossRefGoogle Scholar
  6. Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater B 97:219–243CrossRefGoogle Scholar
  7. Bagla H, Thakur J (2017) Decontamination of radionuclides using γ-Fe2O3 as a nanosorbent. Geophys Res Abs 19:EGU2017–EG14952Google Scholar
  8. Baruah S, Dutta J (2009) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7:191–204CrossRefGoogle Scholar
  9. Basnakova G, Stephens ER, Thaller MC, Rossolini GM, Macaskie LE (1998) The use of Escherichia coli bearing a phoN gene for the removal of uranium and nickel from aqueous flows. Appl Microbiol Biotechnol 50:266–272CrossRefGoogle Scholar
  10. Bengtsson L, Johansson B, Hackett TJ, McHale L, McHale AP (1995) Studies on the biosorption of uranium by Talaromyces emersonii CBS 814.70 biomass. Appl Environ Microbiol 42:807–811Google Scholar
  11. Beveridge TJ (1986) The immobilization of soluble metals by bacterial walls. In: Ehrlich HL, Holmes DS (eds) Biotechnology and bioengineering symposium no. 16: biotechnology for the mining, metal–refining and fossil-fuel processing industries. Wiley, New York, pp 127–140Google Scholar
  12. Bezbaruah AN, Kalita H, Almeelbi T, Capecchi CL, Jacob DL, Ugrinov AG, Payne AS (2014) Ca–alginate-entrapped nanoscale iron: arsenic treatability and mechanism studies. J Nanopart Res 16:2175CrossRefGoogle Scholar
  13. Bhainsa KC, D’Souza FS (1999) Biosorption of uranium(VI) by Aspergillus fumigatus. Biotechnol Tech 13:695–699CrossRefGoogle Scholar
  14. Boileau L, Nieboer JRE, Richardson DHS (1985) Uranium accumulation in the lichen Cladonia rangiferina. Part I. Uptake of cationic, neutral, and anionic forms of the uranyl ion. Can J Bot 63:384–389CrossRefGoogle Scholar
  15. Bors J, Erten H, Martens R (1991) Sorption studies of radioiodine on soils with special references to soil microbial biomass. Radiochim Acta 52–53:317–325Google Scholar
  16. Brown MJ, Lester JN (1982) Role of bacterial extracellular polymers in metal uptake in pure bacterial culture and activated sludge – II effects of mean cell retention time. Water Res 6:1549–1560CrossRefGoogle Scholar
  17. Brown NW, Roberts EPL (2007) Electrochemical pre-treatment of effluents containing chlorinated compounds using an adsorbent. J Appl Electrochem 37:1329–1335CrossRefGoogle Scholar
  18. Brown NW, Campen AK, Wickenden DA, Roberts EPL (2013) On-site destruction of radioactive oily wastes using adsorption coupled with electrochemical regeneration. Chem Eng Res Des 91:713–721CrossRefGoogle Scholar
  19. Brynych V, Pospechova J, Prochazkova L, Cuba V, Szatmary (2014) Sorption of Cs(I), Sr(II) and Eu(III) on modified nickel oxide. Nanocon, November 5th–7th, Brno, Czech Republic, EUGoogle Scholar
  20. Bustard M, Donnellan N, Rollan A, McHale L, McHale AP (1996) The effect of pulse field strength on electric field stimulated biosorption of uranium by Kluyveromyces marxianus IMB3. Biotechnol Lett 18:479–482CrossRefGoogle Scholar
  21. Bystrzejewski M, Pyrzynska K, Huczko A, Lange H (2009) Carbon-encapsulated magnetic nanoparticles as separable and mobile sorbents of heavy metal ions from aqueous solutions. Carbon 47:1201–2009CrossRefGoogle Scholar
  22. Chang D, Fukushi K, Ghosh S (1995) Simulation of activated sludge cultures for enhanced heavy metals removal. Water Environ Res 67:822–827CrossRefGoogle Scholar
  23. Chen C, Wang X (2006) Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind Eng Chem Res 45:9144–9149CrossRefGoogle Scholar
  24. Chukanov VN, Volobuev PV, Poddubnyj VA, Trapeznikov AV (1993) Ecological problems of Ural. Russ J Nondestruct 29:516–521Google Scholar
  25. Darnall DW, Greene B, Gradea-Torresday J (1988) Gold binding to algae in BioHydrometallurgy: In: Norris PR, Kelly DP (eds) Proceedings International Symposium, Science and Technology Letters, Kew, Surrey, UK, pp 487–498Google Scholar
  26. Davis TA, Volesky B, Vieira RHSF (2000) Sargassum seaweed as biosorbent for heavy metals. Water Res 34:4270–4278CrossRefGoogle Scholar
  27. Declerck S, Dupréde Boulois H, Bivort C, Delvaux B (2003) Extra radical mycelium of the arbuscular mycorrhizal fungus Glomus lamellosum can take up, accumulate and translocate radiocaesium under root-organ culture conditions. Environ Microbiol 5:510–516CrossRefGoogle Scholar
  28. Derbyshire F, Jagtoyen M, Andrews R, Rao A, Martin-Gullon I, Grulke E (2001) Carbon materials in environmental applications. In: Radovic LR (ed) Chemistry and physics of carbon, vol 27, Marcel Dekker, New York pp 1–66Google Scholar
  29. Dhankhar R, Hooda A, Solanki R, Sainger PA (2011) Saccharomyces cerevisiae: a potential biosorbent for biosorption of uranium. Int J Engg Sci Technol 3:5397–5407Google Scholar
  30. Dilek FB, Erbay A, Yetis U (2002) Ni(II) biosorption by polyporous versicolor. Process Biochem 37:723–726CrossRefGoogle Scholar
  31. Dodbiba G, Wu IC, Kikuchi T, Fujita T (2008) Adsorption of molybdenum in nitric acid solution by using Pb-Fe based adsorbents. In: Proceedings of the 2008 Global Symposium on Recycling, Waste Treatment and Clean Technology (REWAS 2008), Cancun, Mexico, 12–15 October, pp 63–68Google Scholar
  32. Drake LR, Rayson GD (1996) Plant derived materials for metal ion-selective binding and pre-concentration. Anal Chem 68:22A–27ACrossRefGoogle Scholar
  33. Dresselhaus G, Dresselhaus MS, Avouris P (2001) Carbon nanotubes synthesis, structure, properties and applications. Springer, BerlinGoogle Scholar
  34. Druzhinina TV, Kilyushik YA, Plotnikov DP (2011) Sorption of cadmium ions with chemisorbing polymer fibers. Theor Found Chem 45:482–486CrossRefGoogle Scholar
  35. Dupréde Boulois H, Delvaux B, Declerck S (2005) Effects of arbuscular mycorrhizal fungi on the root uptake and translocation of radiocaesium. Environ Pollut 134:515–524Google Scholar
  36. Eckenfelder Jr WW, Allen PW (1990) Toxicity reduction of industrial effluents, Van Norstrand Reinhold, New York, pp 203–228Google Scholar
  37. El-Deen GES, Imam NG, Ayoub RR (2017) Preparation, characterization and application of superparamagnetic iron oxide nanoparticles modified with natural polymers for removal of 60Co-radionuclides from aqueous solution. Radiochim Acta 105:141–159Google Scholar
  38. Faison BD, Cancel CA, Lewis SN, Adler HI (1990) Binding of dissolved strontium by Micrococcus luteus. Appl Environ Microbiol 56:3649–3656Google Scholar
  39. Fan M, Boonfueng T, Xu Y, Axe L, Tyson TA (2005) Modeling Pb sorption to microporous amorphous oxides as discrete particles and coatings. J Colloid Interface Sci 281:39–48CrossRefGoogle Scholar
  40. Fourest E, Roux JC (1992) Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Appl Microbiol Biotechnol 37:399–403CrossRefGoogle Scholar
  41. Fourest E, Canal C, Roux JC (1992) Improvement of heavy metal biosorption by mycelial dead biomasses (Rhizopus arrhizus, Muchor miehei, and Pencillium chrysogenum): pH control and cationic activation. FEMS Microbiol Rev 14:325–332CrossRefGoogle Scholar
  42. Friis N, Myers-Keith P (1998) Biosorption of uranium and lead by Streptomyces longwoodensis. Biotechnol Bioeng 28:21–28CrossRefGoogle Scholar
  43. Fukushi K, Chang D, Ghosh S (1996) Enhanced heavy metal uptake by activated sludge cultures growth in the presence of bioplymer stimularors. Water Sci Technol 34:267–272CrossRefGoogle Scholar
  44. Gadd GM, White C, de Rome L (1988) Heavy metal and radionucleide uptake by fungi and yeasts, in bio hydrometallurgy. In: Norris PR, Kelly DP (eds), Proceedings International Symposium, Science and Technology letters, Kew, Surrey, pp 421–436Google Scholar
  45. Gadde RR, Laitinen HA (1974) Studies of heavy metal adsorption by hydrous iron and manganese oxides. Anal Chem 46:2022–2026CrossRefGoogle Scholar
  46. Galun M, Keller P, Malki D, Feidstein H, Galun E, Siegel S, Siegel B (1984) Removal of uranium (VI) from solution by fungal biomass: inhibition by iron. Water Air Soil Pollut 21:411–414CrossRefGoogle Scholar
  47. Ganesh R, Robinson KG, Reed GR, Saylor GS (1997) Reduction of hexavlaent uranium from organic complexes by sulfate- and iron-reducing bacteria. Appl Environ Microbiol 63:4385–4391Google Scholar
  48. Gao Z, Bandosz TJ, Zhao Z, Han M, Qiu J (2009) Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J Hazard Mater 167:357–365CrossRefGoogle Scholar
  49. Gee AR, Dudeney AWL (1988) Adsorption and crystallisation of gold at biological surfaces, in bio hydrometallurgy. In: Norris PR, Kelly DP (eds) Proceedings International Symposium, Science and Technology letters, Kew. Surrey, pp 437–451Google Scholar
  50. Ghazvini PTM, Ghorbanzadeh Mashkani S, Ghafourian H (2007) Bioabsorption of strontium from aqueous solution by new strain Bacillus sp. GTG-83. WM’07 conference, Tuscon, AZGoogle Scholar
  51. Greene B, Darnall DW (1990) Microbial oxygenic photoautotrophs for metal-ion binding. In: Ehrlich HL, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 277–302Google Scholar
  52. Gupta VK, Tyagi I, Sadegh H, Shahryari-Ghoshekand R, Makhlouf ASH, Maazinejad B (2015) Nanoparticles as adsorbent a positive approach for removal of noxious metal ions: a review. Sci Technol Dev 34:195CrossRefGoogle Scholar
  53. Haas JR (1998) A comparison of U and lanthanide bioaccumulation by some common lichens. Geological Society of America, Annual meeting, Toronto 30:204–205Google Scholar
  54. Haas JR, Bailey EH, Purvis OW (1998) Bioaccumulation of metals by lichens; uptake of aqueous uranium by Peltigera membranancea as a function of time and pH. Am Mineral 83:1494–1502CrossRefGoogle Scholar
  55. Haferburg G, Merten D, Buchel G, Kothe E (2007) Bio-sorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rare earth element patterns in acid mine drainage. J Basic Microbiol 47:474–484CrossRefGoogle Scholar
  56. Hafez N, Abdel-Razek AS, Hafez MB (1997) Accumulation of some heavy metals on Aspergillus flavus. J Chem Technol Biotechnol 68:19–22CrossRefGoogle Scholar
  57. Heide EA, Wagener K, Paschke M, Wald M (1973) Extraction of uranium from sea water by cultured algae. Naturwissenschaften 60:431CrossRefGoogle Scholar
  58. Holan ZR, Volesky B, Prasetyo I (1993) Biosorption of cadmium by biomass of marine algae. Biotechnol Bioeng 41:819–825CrossRefGoogle Scholar
  59. Horikoshi T, Nakajima A, Sakaguchi T (1979) Uptake of uranium by Chlorella regularis. Agric Biol Chem 43:617–623Google Scholar
  60. Hsieh SH, Horng JJ (2007) Adsorption behavior of heavy metal ions by carbon nanotubes grown on microsized Al2O3 particles. J Univ Sci Technol Bejing Min Matel Mater 14:77–84Google Scholar
  61. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331CrossRefGoogle Scholar
  62. International Atomic Energy Agency (1970) Standardization of radioactive waste categories. Technical reports series no. 101. International Atomic Energy Agency (IAEA), ViennaGoogle Scholar
  63. International Atomic Energy Agency (1994) Handling, treatment, conditioning and storage of biological radioactive wastes, IAEA-TECDOC-775, ViennaGoogle Scholar
  64. International Atomic Energy Agency (1999) Technologies for remediation of radioactively contaminated sites, Austria ISSN 1011-4289Google Scholar
  65. International Atomic Energy Agency (2001) Handling and processing of radioactive waste from nuclear applications. Technical reports series no. 402. International Atomic Energy Agency (IAEA), ViennaGoogle Scholar
  66. International Atomic Energy Agency (2006a) Application of thermal technologies for processing of radioactive waste. IAEA-TECDOC-1527. International Atomic Energy Agency (IAEA), ViennaGoogle Scholar
  67. International Atomic Energy Agency (2006b) Fundamental safety principals. IAEA safety standards series. SF-1. IAEA, ViennaGoogle Scholar
  68. International Atomic Energy Agency (2008) The management system for the processing, handling and storage of radioactive waste. Safety guide no. GS-G-3.3. International Atomic Energy Agency (IAEA), ViennaGoogle Scholar
  69. Iyer A, Jha B (2005) Biosorption of heavy metals by a marine bacterium. Mar Pollut Bull 50:340–343CrossRefGoogle Scholar
  70. Jang SC, Hong SB, Yang HM, Lee KW, Moon JK, Seo BK, Huh YS, Roh C (2014) Removal of radioactive cesium using Prussian blue magnetic nanoparticles. Nano 4:894–901Google Scholar
  71. Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298CrossRefGoogle Scholar
  72. Kaur M, Zhang H, Martin L, Todd T, Qiang Y (2013) Conjugates of magnetic nanoparticle actinide specific chelator for radioactive waste separation. Environ Sci Technol 47:11942–11959CrossRefGoogle Scholar
  73. Keskinkan O, Goksu MZL, Yuceer A, Basibuyuk M, Forster CF (2003) Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum). Process Biochem 39:179–183CrossRefGoogle Scholar
  74. Khalid AM, Ashfaq SR, Bhatti TM, Anwar MA, Shemsi AM, Akhtar K (1993) The uptake of microbially leached uranium by immobilized microbial biomass. In: Torma AE, Apel ML, Brierley CL (eds) Biohydrometallurgical technologies. In: Proceedings of the International Biohydrometallurgical Symposium, The Minerals, Metals and Materials Society, Warrendale, PAGoogle Scholar
  75. Khani M, Keshtkar A, Meysami B, Zarea M, Jalali R (2005) Biosorption of uranium from aqueous solutions by nonliving biomass of marine algae Cystoseira ical heterogeneity in an in situ uranium bioremediation field site. Appl Environ Microbiol 71:6308–6318CrossRefGoogle Scholar
  76. Koval’skiy VV, Vorotnitskaya IY (1965) Biogenic migration of uranium in Lake Issyk-Kul. Geokhimiya 6:724–732Google Scholar
  77. Kumar R, Acharya C, Joshi SR (2011) Isolation and analyses of Uranium tolerant Serretia marcescens strains and their utilization for aerobic Uranium U(VI) bioadsorption. J Microbiol 49:568–574CrossRefGoogle Scholar
  78. Kurniawan TA, Babel S (2003) A research study on Cr(VI) removal from contaminated wastewater using low-cost adsorbents and commercial activated carbon. In: Second International Conference on Energy Technology towards a Clean Environment (RCETE), vol 2. Phuket, Thailand, 12–14 February, pp 1110–1117Google Scholar
  79. Kuycak N, Volesky B (1988) Biosorbents for recovery of metals from industrial solutions. Biotechnol Lett 10:137CrossRefGoogle Scholar
  80. Lapkin A, Bozkaya B, Mays T, Borello L, Edler K, Crittenden B (2003) Preparation and characterization of chemisorbents based on heteropolyacids supported on synthetic mesoporous carbons and silica. Catal Today 81:611–621CrossRefGoogle Scholar
  81. Li YH, Wang S, Wei J, Zhang X, Xu C, Luan Z, Wu D, Wei B (2002) Lead adsorption on carbon nanotubes. Chem Phys Lett 357:263–266CrossRefGoogle Scholar
  82. Li YH, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wu D, Wei B (2003a) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41:2787–2792CrossRefGoogle Scholar
  83. Li YH, Wang Z, Luan J, Ding J, Xu C, Wu D (2003b) Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41:1057–1062CrossRefGoogle Scholar
  84. Li Y, Di Z, Ding J, Wu D, Luan Z, Zhu Y (2005) Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Wat Res 39:605–609CrossRefGoogle Scholar
  85. Li YH, Zhu Y, Zhao Y, Wu D, Luan Z (2006) Different morphologies of carbon nanotubes effect on the lead removal from aqueous solution. Diam Relat Mater 15:90–94CrossRefGoogle Scholar
  86. Liang P, Shi T, Li J (2004) Nanometer-size titanium dioxide separation/pre concentration and FAAS determination of trace Zn and cd in water sample. Int J Environ Anal Chem 84:315–321CrossRefGoogle Scholar
  87. Liu HH, Wu JT (1993) Uptake and recovery of americium and uranium by Anacystis biomass. J Environ Sci Health A Tox Hazard Subst Environ Eng 28:491–504Google Scholar
  88. Liu HL, Chen BY, Lan YW, Cheng YC (2004) Biosorption of Zn(II) and Cu(II) by the indigenous Thiobacillus thiooxidans. Chem Eng J 97:195–20CrossRefGoogle Scholar
  89. Lloyd JR, Yong P, Macaskie LE (2000) Biological reduction and removal of np(V) by two microorganisms. Environ Sci Technol 34:1297–1301CrossRefGoogle Scholar
  90. Lu C, Chiu H (2006) Adsorption of zinc(II) from water with purified carbon nanotubes. Chem Eng Sci 61:1138–1145CrossRefGoogle Scholar
  91. Lu C, Liu C (2006) Removal of nickel(II) from aqueous solution by carbon nanotubes. J Chem Technol Biotechnol 81:1932–1940CrossRefGoogle Scholar
  92. Lu C, Chiu H, Liu C (2006) Removal of zinc(II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind Eng Chem Res 45:2850–2855CrossRefGoogle Scholar
  93. Lu C, Liu C, Rao GP (2008) Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon. J Hazard Mater 151:239–246CrossRefGoogle Scholar
  94. Lujaniene G, Semcuk S, Kulakauskaite I, Mazeika K, Valiulis D, Juskenas R, Tautkus S (2016) Sorption of radionuclides and metals to graphene oxide and magnetic graphene oxide. J Radioanal Nucl Chem 307:2267–2275CrossRefGoogle Scholar
  95. Luo T, Cui J, Hu S, Huang Y, Jing C (2010) Arsenic removal and recovery from copper smelting wastewater using TiO2. Environ Sci Technol 44:9094–9098CrossRefGoogle Scholar
  96. Macaskie LE, Bonthrone KM, Yong P, Goddard DT (2000) Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology 146:1855–1867CrossRefGoogle Scholar
  97. Mann H, Fyfe WS (1984) An experimental study of algal uptake of U, Ba, V, Co and Ni from dilute solutions. Chem Geol 44:385–398CrossRefGoogle Scholar
  98. Mann H, Fyfe WS (1985) Uranium uptake by algae: experimental and natural environments. Can J Earth Sci 22:1899–1903CrossRefGoogle Scholar
  99. Manos MJ, Iyer RG, Quarez E, Liao JH, Kanatzidis MG (2005) {Sn[Zn4Sn4S17]}6−: a robust open framework based on metal-linked penta-supertetrahedral [Zn4Sn4S17]10− clusters with ion-exchange properties. Angew Chem 44:3552–3555CrossRefGoogle Scholar
  100. Mansouri N, Saberyan K, Noaparast M (2014) Adsorption of U(VI) from aqueous solution by Triocthylamine (TOA) functionalized magnetite nanoparticles as a novel adsorbent. J Adv Chem 10:2403–2414CrossRefGoogle Scholar
  101. Mattuschka B, Junghaus K, Straube G (1993) Biosorption of metals by waste biomass. In: Torma AE, Apel ML, Brierley CL (eds) Biohydrometallurgical technologies. Proceedings of the International Biohydrometallurgical Symposium, The Minerals, Metals and Materials Society, Warrendale, PAGoogle Scholar
  102. McCoy KB, Derecho I, Wong T, Tran HM, Huynh TD, La Duc MT, Venkateswaran K, Mogul R (2012) Insights into the extremotolerance of Acinetobacter radioresistens 50v1, a gram-negative bacterium isolated from the Mars Odyssey spacecraft. Astrobiology 12:854–862CrossRefGoogle Scholar
  103. McCready RGL, Lakshmanan VI (1986) Review of bioabsorption research to recover uranium from leach solutions in Canada. In: Eclles S (ed) Immobilisation of Ions by bio-sorption. Canada Centre for Mineral and Energy Technology, Energy Mines and Resources Canada, Ottawa, pp 219–225Google Scholar
  104. Méndez de Vigo GE (2000) Origin and radioactive waste management, In: Official College of Physicians Illustrious. 3rd edition. 105:188Google Scholar
  105. Mullen MD, Wolfe DC, Ferris FG, Beveridge TJ, Flemming CA, Bailey GW (1989) Bacterial sorption of heavy metal. Appl Environ Microbiol 55:3143–3149Google Scholar
  106. Mushtaq S, Yun SE, Yang JE, Jeong SW, Shim HE, Choi MH, Park SH, Choi YJ, Jeon J (2017) Efficient and selective removal of radioactive iodine anions using engineered nanocomposite membranes. Environ Sci Nano 4:2157–2163Google Scholar
  107. Nakajima A, Sakaguchi T (1986) Selective accumulation of heavy metals by microorganisms. Appl Microbiol Biotechnol 24:59–64Google Scholar
  108. Nandi D, Basu T, Debnath S, Ghosh AK, De A, Ghosh UC (2013) Mechanistic insight for the sorption of Cd(II) and Cu(II) from aqueous solution on magnetic Mn-doped Fe(III) oxide nanoparticle implanted graphene. J Chem Eng Data 58:2809–2818CrossRefGoogle Scholar
  109. Neu MP, Icopini GA, Boukhalfa H (2005) Plutonium speciation affected by environmental bacteria. Radiochim Acta 93:705–714CrossRefGoogle Scholar
  110. Niu H, Xu XS, Wang JH (1993) Removal of lead from aqueous solutions by Penicillium biomass. Biotechnol Bioeng 42:785–787CrossRefGoogle Scholar
  111. Norberg A, Persson H (1984) Accumulation of heavy metal ions by Zoogloea ramigera. Biotechnol Bioeng 26:239–246CrossRefGoogle Scholar
  112. Norberg A, Rydin S (1984) Development of a continuous process for metal accumulation by Zoogloea ramigera. Biotecnol Bioeng 26:265–268CrossRefGoogle Scholar
  113. Oscik J (1982) Adsorption. Chichester, Ellis Horwood Ltd. PublishersGoogle Scholar
  114. Oves M, Khan MS, Zaidi A (2013) Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J Biol Sci 20:121–129CrossRefGoogle Scholar
  115. Ozaki T, Gillow JB, Kimura T, Ohnuki T, Yoshida Z, Francis AJ (2004) Sorption behavior of europium(III) and curium(III) on the cell surfaces of microorganisms. Radiochim Acta 92:741–748CrossRefGoogle Scholar
  116. Ozdemir G, Ceyhan N, Ozturk T, Akirmak F, Cosar T (2004) Biosorption of chromium(VI), cadmium(II) and copper(II) by Pantoea sp. TEM18. Chem Eng J 102:249–253CrossRefGoogle Scholar
  117. Pandey PK, Choubey S, Verrma Y, Pandey M, Chandrashekhar P (2009) Biosorptive removal of arsenic from drinking water. Bioresour Technol 100:634–637CrossRefGoogle Scholar
  118. Parida KM, Kanungo SB, Sant BR (1981) Studies on MnO2-I, chemical composition, microstructure and other characteristics of some synthetic MnO2 of various crystalline modifications. Electrochim Acta 26:435–443CrossRefGoogle Scholar
  119. Polman JK, Breckenridge CR (1996) Biomass-mediated binding and recovery of textile dyes from waste effluents. Text Chem Colour 28:31–35Google Scholar
  120. Pozhidaev YN, Panezhda EV, Grigor’eva OY, Kirillov AI, Belousova LI, Vlasova NN, Voronkov MG (2003) Carbofunctional Polyorganylsilsesquioxanes as sorbents for some rare metals. Dokl Chem 389:97–100CrossRefGoogle Scholar
  121. Prasad MNV, Oliveira Freitas HMD (2003) Metal hyperaccumulation in plants–biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:110–146CrossRefGoogle Scholar
  122. Pribil S, Marvan P (1976) Accumulation of uranium by the chlorococcal alga Scenedesmus quadricauda. Arch Hydrobiol Suppl 49:214–225Google Scholar
  123. Radiation Safety General Regulations (1988) Official Journal of the Federation, November 22Google Scholar
  124. Ramachandra TV, Ahalya N, Kanamadi RD (2005) Biosorption: techniques and mechanisms. CES Tchnical Rep 110:33Google Scholar
  125. Ramakrishna KR, Viraraghavan T (1997) Dye removal using low cost adsorbents. Water Sci Technol 36:189–196CrossRefGoogle Scholar
  126. Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58:224CrossRefGoogle Scholar
  127. Rastogi G, Osman S, Vaishampayan PA, Andersen GL, Stetler LD, Sani RK (2010) Microbial diversity in uranium mining-impacted soils as revealed by high-density 16S microarray and clone library. Microb Ecol 59:94–108CrossRefGoogle Scholar
  128. Roig MG, Manzano T, Diaz M (1997) Biochemical process for the removal of uranium from acid mine drainages. Water Res 31:2073–2083CrossRefGoogle Scholar
  129. Rudd T, Sterritt RM, Lester JN (1984) Formation and conditional stability constants of complexes formed between heavy metals and bacterial extracellular polymers. Water Res 18:379–384CrossRefGoogle Scholar
  130. Ruparelia JP, Duttagupta SP, Chatterjee AK, Mukherji S (2008) Potential of carbon nanomaterials for removal of heavy metals from water. Desalination 232:145CrossRefGoogle Scholar
  131. Sao K, Khan F, Pandey PK, Pandey M (2014) A review on heavy metals uptake by plants through biosorption. Intl Proc Econ Develop Res 75:78Google Scholar
  132. Schneider IAH, Rubio J (1999) Sorption of heavy metal ions by the non-living biomass of freshwater macrophytes. Environ Sci Tech 33:2213–2217CrossRefGoogle Scholar
  133. Schneider IAH, Rubio J, Smith RW (1999) Effect of some mining chemicals on biosorption of Cu(II) by the non-living biomass of the freshwater macrophyte Potamogeton lucens. Miner Eng 12:255–260CrossRefGoogle Scholar
  134. Shashkova IL, Rat’ko AI, Mil’vit NV, Muravitskaya EV (2009) The use of chemisorption technologies in separation of multicomponent mixtures of metal ions. Russ J Appl Chem 82:940–946CrossRefGoogle Scholar
  135. Shelobolina ES, Sullivan SA, O’Neill KR, Nevin KP, Lovley DR (2004) Isolation, characterization, and U(VI)-reducing potential of a facultatively anaerobic, acid-resistant bacterium from low-pH, nitrate- and U(VI)-contaminated subsurface sediment and description of Salmonella subterranea sp. nov. Appl Environ Microbiol 70:2959–2965CrossRefGoogle Scholar
  136. Siegel S, Keller P, Galun M, Lehr H, Siegel B, Galun B (1986) Biosorption of lead and chromium by Penicillium preparations. Water Air Soil Pollut 27:69–75CrossRefGoogle Scholar
  137. Singh S, Barick KC, Bahadur D (2013) Fe3O4 embedded ZnO nanocomposites for the removal of toxic metal ions, organic dyes and bacterial pathogens. J Mater Chem A 1:3325–3333CrossRefGoogle Scholar
  138. Sobolev LA (1994) Radiation anomalies in Moscow region. Ecomaz, Moscow 52Google Scholar
  139. Songakasiri K, Reed DT, Rittmann BE (2002) Biosorption of neptunium(V) by Pseudomonas fluorescens. Radiochim Acta 90:785–789Google Scholar
  140. Sposito G (1982) On the surface complexation model of the oxide aqueous solution interface. J Coll Interf Sci 91:329–340CrossRefGoogle Scholar
  141. Sposito G (1986) Distinguishing adsorption from surface precipitation. Geochem Process Miner Surf 323:217–228CrossRefGoogle Scholar
  142. Stafiej A, Pyrzynska K (2007) Adsorption of heavy metal ions with carbon nanotubes. Sep Purif Technol 58:49CrossRefGoogle Scholar
  143. Stuetz RM, Madgwick JC, Gee AR (1993) Immobilisation of biosorbed metal ions. In: Torma AE, Apel ML, Brierley CL (eds) Biohydrometallurgical technologies. Proceedings of the International Biohydrometallurgical Symposium, The Minerals, Metals and Materials Society, Warrendale, PAGoogle Scholar
  144. Stumm W (1992) Chemistry of the solid-water Interface: processes at the mineral-water and particle-water Interface in natural systems. Wiley, CanadaGoogle Scholar
  145. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley, New YorkGoogle Scholar
  146. Townsley CC, Ross IS, Atkins AS (1986) Biorecovery of metallic residues from various industrial effluents using filamentous fungi. In: Lawrence RW, Branion RMR, Ebner HG (eds) Fundamental and applied biohydrometallurgy. Elsevier, Amsterdam, pp 279–289Google Scholar
  147. Tsezos M, Volesky B (1982) The mechanism of thorium biosorption by Rhizopus arrhizus. Biotechnol Bioeng 24:955–969CrossRefGoogle Scholar
  148. U.S. Environmental Protection Agency (2000) Introduction to phytoremediation. National Risk Management Research Laboratory, EPA/600/R-99/107Google Scholar
  149. Uheida A, Iglesias M, Fontas C, Hidalgo M, Salvado V, Zhang Y, Muhammed M (2006) Sorption of Palladium(II), Rhodium(III), and Platinum(IV) on Fe3O4 nanoparticles. J Coll Interf Sci 301:402–408CrossRefGoogle Scholar
  150. Visa M, Duta A (2013) TiO2/fly ash novel substrate for simultaneous removal of heavy metals and surfactants. Chem Eng J 223:860–868CrossRefGoogle Scholar
  151. Volesky B (1990) Biosorption of heavy metals. CRC Press, Boston, November. ISBN 0849349176, 408Google Scholar
  152. Volesky B, Prasetyo I (1994) Cadmium removal in a biosorption column. Biotechnol Bioeng 43:1010–1015CrossRefGoogle Scholar
  153. Volesky B, Sezos M (1982) Separation of uranium by biosorption. Biotechnol Bioeng 23:583–604Google Scholar
  154. Voronkov MG, Vlasova NN, Pozhidaev YN (1996) Organosilicon ion-exchange and complexing sorbents. Zh Prikl Khim 69:705–718Google Scholar
  155. Voronkov MG, Vlasova NN, Pozhidaev YN (2000) Organosilicon ion exchange and complexing adsorbents. Appl Organomet Chem 14:287–303CrossRefGoogle Scholar
  156. Wang TC, Weissman JC, Ramesh G, Varadarajan R, Benemann JR (1996) Parameters for removal of toxic heavy metals by water milfoil (Myriophyllum spicatum). Bull Environ Cont Toxicol 57:779–786CrossRefGoogle Scholar
  157. Wang X, Cai W, Lin Y, Wang G, Liang C (2010) Mass production of micro/nanostructured porous ZnO plates and their strong structurally enhanced and selective adsorption performance for environmental remediation. J Mater Chem 20:8582–8590CrossRefGoogle Scholar
  158. Wase J, Forster CF (1997) Biosorbents for metal ions. Taylor & Francis, London pp 238Google Scholar
  159. Watson JHP, Croudace IW, Warwick PE, James PAB, Charnock JM, Ellwood DC (2001) Adsorption of radioactive metals by strongly magnetic iron sulfide nanoparticles produced by sulfate-reducing bacteria. Sep Sci Technol 36:2571–2607CrossRefGoogle Scholar
  160. Witek-Krowiak A, Szafran RG, Modelski S (2010) Biosorption of heavy metals from aqueous solutions onto peanut shell as a lowcost biosorbent. Desalination 265(1–3):126–134CrossRefGoogle Scholar
  161. Xie S, Yang J, Chen C, Zhang X, Wang Q, Zhang C (2008) Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii. J Environ Radioact 99:126–133CrossRefGoogle Scholar
  162. Xu M, Wei G, Liu N, Zhou L, Fu C, Chubik MP, Chubik MP, Gromov A, Han W (2014) Novel fungus-titanate bio-nanocomposites as high performance adsorbents for the efficient removal of radioactive ions from wastewater. Nanoscale 6:722–725CrossRefGoogle Scholar
  163. Yang J, Volesky B (1999) Biosorption of uranium on Sargassum biomass. Water Res 33:3357–3363CrossRefGoogle Scholar
  164. Yantasee W, Rutledge RD, Chouyyok W, Sukwarotwat V, Orr G, Warner CL, Warner MG, Fryxell GE, Wiacek RJ, Timchalk C, Addleman RS (2010) Functionalized nanoporous silica for the removal of heavy metals from biological systems: adsorption and application. ACS Appl Mater Interf 2:2749–2758CrossRefGoogle Scholar
  165. Yousefi T, Khanchi AR, Ahmadi SJ, Rofouei MK, Yavari R, Davarkhah R, Myanji B (2012) Cerium(III) molybdate nanoparticles: synthesis, characterization and radionuclides adsorption studies. J Hazard Mater 215-216:266–271CrossRefGoogle Scholar
  166. Zhou YT, Nie HL, White CB, He ZY, Zhu LM (2009) Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with aketoglutaric acid. J Colloid Interface Sci 330:29–37CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Microbiology Laboratory, Department of Biotechnology and BioinformaticsNorth-Eastern Hill UniversityShillongIndia

Personalised recommendations