Skip to main content

Biological, Chemical and Nanosorption Approaches in Remediation of Metal Wastes

  • Chapter
  • First Online:
Book cover Remediation Measures for Radioactively Contaminated Areas

Abstract

Metal and radioactive wastes are generated from industrial, domestic and anthropogenic activities. Management of such wastes is a challenging ecological task. Several steps like minimization, pretreatment, sorption, characterization etc. needs been done before the final disposal of these wastes. Absorption and adsorption have been successfully employed in removal and remediation of various pollutants such as heavy metals and radionuclides waste materials from the contaminated sites. Different types of adsorbents are used in the process, which vary with the metals. Among them, biological, chemical and nanosorption methods are well known and are exploited for environmental remediation. In biological method different life forms like plants, algae, fungi and bacteria are effectively used. Chemical approaches require the use of different chemicals and chemical-conjugates as functional adsorbents. Nanosorption is a recent technique, where nanoparticles, nanocomposites, core/shell nanoparticles as well as nanotubes are employed as adsorbent for removal, transformation, sorption and detection of all types of pollutants including noxious radioactive wastes from soil, air and water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel RO, Rahman HA, Hung YT (2011) Liquid radioactive wastes treatment: a review. Water 3:551–565

    Article  Google Scholar 

  • Addour L, Belhocine D, Boudries N, Comeau Y, Pauss A, Mamer N (1999) Zinc uptake by Streptomyces rimosus biomass using a packed-bed column. J Chem Technol Biotechnol 74:1089–1095

    Article  CAS  Google Scholar 

  • Aksu Z, Sag Y, Kutsal T (1992) The biosorption of copper (II) by C. vulgaris and Z. ramigera. Environ Technol 13:579–586

    Article  CAS  Google Scholar 

  • Awual RM, Yaita T, El-Safty SA, Shiwaku H, Okamoto Y, Suzuki S (2013) Investigation of palladium(II) detection and recovery using ligand modified conjugate adsorbent. Chem Eng J 222:172–179

    Article  CAS  Google Scholar 

  • Awual MR, Rahman IMM, Yaita T, Khaleque MA, Ferdows M (2014) PH dependent cu(II) and Pd(II) ions detection and removal from aqueous media by an efficient mesoporous adsorbent. Chem Eng J 236:100–109

    Article  CAS  Google Scholar 

  • Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater B 97:219–243

    Article  CAS  Google Scholar 

  • Bagla H, Thakur J (2017) Decontamination of radionuclides using γ-Fe2O3 as a nanosorbent. Geophys Res Abs 19:EGU2017–EG14952

    Google Scholar 

  • Baruah S, Dutta J (2009) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7:191–204

    Article  CAS  Google Scholar 

  • Basnakova G, Stephens ER, Thaller MC, Rossolini GM, Macaskie LE (1998) The use of Escherichia coli bearing a phoN gene for the removal of uranium and nickel from aqueous flows. Appl Microbiol Biotechnol 50:266–272

    Article  CAS  Google Scholar 

  • Bengtsson L, Johansson B, Hackett TJ, McHale L, McHale AP (1995) Studies on the biosorption of uranium by Talaromyces emersonii CBS 814.70 biomass. Appl Environ Microbiol 42:807–811

    CAS  Google Scholar 

  • Beveridge TJ (1986) The immobilization of soluble metals by bacterial walls. In: Ehrlich HL, Holmes DS (eds) Biotechnology and bioengineering symposium no. 16: biotechnology for the mining, metal–refining and fossil-fuel processing industries. Wiley, New York, pp 127–140

    Google Scholar 

  • Bezbaruah AN, Kalita H, Almeelbi T, Capecchi CL, Jacob DL, Ugrinov AG, Payne AS (2014) Ca–alginate-entrapped nanoscale iron: arsenic treatability and mechanism studies. J Nanopart Res 16:2175

    Article  CAS  Google Scholar 

  • Bhainsa KC, D’Souza FS (1999) Biosorption of uranium(VI) by Aspergillus fumigatus. Biotechnol Tech 13:695–699

    Article  CAS  Google Scholar 

  • Boileau L, Nieboer JRE, Richardson DHS (1985) Uranium accumulation in the lichen Cladonia rangiferina. Part I. Uptake of cationic, neutral, and anionic forms of the uranyl ion. Can J Bot 63:384–389

    Article  CAS  Google Scholar 

  • Bors J, Erten H, Martens R (1991) Sorption studies of radioiodine on soils with special references to soil microbial biomass. Radiochim Acta 52–53:317–325

    Google Scholar 

  • Brown MJ, Lester JN (1982) Role of bacterial extracellular polymers in metal uptake in pure bacterial culture and activated sludge – II effects of mean cell retention time. Water Res 6:1549–1560

    Article  Google Scholar 

  • Brown NW, Roberts EPL (2007) Electrochemical pre-treatment of effluents containing chlorinated compounds using an adsorbent. J Appl Electrochem 37:1329–1335

    Article  CAS  Google Scholar 

  • Brown NW, Campen AK, Wickenden DA, Roberts EPL (2013) On-site destruction of radioactive oily wastes using adsorption coupled with electrochemical regeneration. Chem Eng Res Des 91:713–721

    Article  CAS  Google Scholar 

  • Brynych V, Pospechova J, Prochazkova L, Cuba V, Szatmary (2014) Sorption of Cs(I), Sr(II) and Eu(III) on modified nickel oxide. Nanocon, November 5th–7th, Brno, Czech Republic, EU

    Google Scholar 

  • Bustard M, Donnellan N, Rollan A, McHale L, McHale AP (1996) The effect of pulse field strength on electric field stimulated biosorption of uranium by Kluyveromyces marxianus IMB3. Biotechnol Lett 18:479–482

    Article  CAS  Google Scholar 

  • Bystrzejewski M, Pyrzynska K, Huczko A, Lange H (2009) Carbon-encapsulated magnetic nanoparticles as separable and mobile sorbents of heavy metal ions from aqueous solutions. Carbon 47:1201–2009

    Article  CAS  Google Scholar 

  • Chang D, Fukushi K, Ghosh S (1995) Simulation of activated sludge cultures for enhanced heavy metals removal. Water Environ Res 67:822–827

    Article  CAS  Google Scholar 

  • Chen C, Wang X (2006) Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind Eng Chem Res 45:9144–9149

    Article  CAS  Google Scholar 

  • Chukanov VN, Volobuev PV, Poddubnyj VA, Trapeznikov AV (1993) Ecological problems of Ural. Russ J Nondestruct 29:516–521

    Google Scholar 

  • Darnall DW, Greene B, Gradea-Torresday J (1988) Gold binding to algae in BioHydrometallurgy: In: Norris PR, Kelly DP (eds) Proceedings International Symposium, Science and Technology Letters, Kew, Surrey, UK, pp 487–498

    Google Scholar 

  • Davis TA, Volesky B, Vieira RHSF (2000) Sargassum seaweed as biosorbent for heavy metals. Water Res 34:4270–4278

    Article  CAS  Google Scholar 

  • Declerck S, Dupréde Boulois H, Bivort C, Delvaux B (2003) Extra radical mycelium of the arbuscular mycorrhizal fungus Glomus lamellosum can take up, accumulate and translocate radiocaesium under root-organ culture conditions. Environ Microbiol 5:510–516

    Article  Google Scholar 

  • Derbyshire F, Jagtoyen M, Andrews R, Rao A, Martin-Gullon I, Grulke E (2001) Carbon materials in environmental applications. In: Radovic LR (ed) Chemistry and physics of carbon, vol 27, Marcel Dekker, New York pp 1–66

    Google Scholar 

  • Dhankhar R, Hooda A, Solanki R, Sainger PA (2011) Saccharomyces cerevisiae: a potential biosorbent for biosorption of uranium. Int J Engg Sci Technol 3:5397–5407

    Google Scholar 

  • Dilek FB, Erbay A, Yetis U (2002) Ni(II) biosorption by polyporous versicolor. Process Biochem 37:723–726

    Article  CAS  Google Scholar 

  • Dodbiba G, Wu IC, Kikuchi T, Fujita T (2008) Adsorption of molybdenum in nitric acid solution by using Pb-Fe based adsorbents. In: Proceedings of the 2008 Global Symposium on Recycling, Waste Treatment and Clean Technology (REWAS 2008), Cancun, Mexico, 12–15 October, pp 63–68

    Google Scholar 

  • Drake LR, Rayson GD (1996) Plant derived materials for metal ion-selective binding and pre-concentration. Anal Chem 68:22A–27A

    Article  CAS  Google Scholar 

  • Dresselhaus G, Dresselhaus MS, Avouris P (2001) Carbon nanotubes synthesis, structure, properties and applications. Springer, Berlin

    Google Scholar 

  • Druzhinina TV, Kilyushik YA, Plotnikov DP (2011) Sorption of cadmium ions with chemisorbing polymer fibers. Theor Found Chem 45:482–486

    Article  CAS  Google Scholar 

  • Dupréde Boulois H, Delvaux B, Declerck S (2005) Effects of arbuscular mycorrhizal fungi on the root uptake and translocation of radiocaesium. Environ Pollut 134:515–524

    Google Scholar 

  • Eckenfelder Jr WW, Allen PW (1990) Toxicity reduction of industrial effluents, Van Norstrand Reinhold, New York, pp 203–228

    Google Scholar 

  • El-Deen GES, Imam NG, Ayoub RR (2017) Preparation, characterization and application of superparamagnetic iron oxide nanoparticles modified with natural polymers for removal of 60Co-radionuclides from aqueous solution. Radiochim Acta 105:141–159

    Google Scholar 

  • Faison BD, Cancel CA, Lewis SN, Adler HI (1990) Binding of dissolved strontium by Micrococcus luteus. Appl Environ Microbiol 56:3649–3656

    CAS  Google Scholar 

  • Fan M, Boonfueng T, Xu Y, Axe L, Tyson TA (2005) Modeling Pb sorption to microporous amorphous oxides as discrete particles and coatings. J Colloid Interface Sci 281:39–48

    Article  CAS  Google Scholar 

  • Fourest E, Roux JC (1992) Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Appl Microbiol Biotechnol 37:399–403

    Article  CAS  Google Scholar 

  • Fourest E, Canal C, Roux JC (1992) Improvement of heavy metal biosorption by mycelial dead biomasses (Rhizopus arrhizus, Muchor miehei, and Pencillium chrysogenum): pH control and cationic activation. FEMS Microbiol Rev 14:325–332

    Article  CAS  Google Scholar 

  • Friis N, Myers-Keith P (1998) Biosorption of uranium and lead by Streptomyces longwoodensis. Biotechnol Bioeng 28:21–28

    Article  Google Scholar 

  • Fukushi K, Chang D, Ghosh S (1996) Enhanced heavy metal uptake by activated sludge cultures growth in the presence of bioplymer stimularors. Water Sci Technol 34:267–272

    Article  CAS  Google Scholar 

  • Gadd GM, White C, de Rome L (1988) Heavy metal and radionucleide uptake by fungi and yeasts, in bio hydrometallurgy. In: Norris PR, Kelly DP (eds), Proceedings International Symposium, Science and Technology letters, Kew, Surrey, pp 421–436

    Google Scholar 

  • Gadde RR, Laitinen HA (1974) Studies of heavy metal adsorption by hydrous iron and manganese oxides. Anal Chem 46:2022–2026

    Article  CAS  Google Scholar 

  • Galun M, Keller P, Malki D, Feidstein H, Galun E, Siegel S, Siegel B (1984) Removal of uranium (VI) from solution by fungal biomass: inhibition by iron. Water Air Soil Pollut 21:411–414

    Article  CAS  Google Scholar 

  • Ganesh R, Robinson KG, Reed GR, Saylor GS (1997) Reduction of hexavlaent uranium from organic complexes by sulfate- and iron-reducing bacteria. Appl Environ Microbiol 63:4385–4391

    CAS  Google Scholar 

  • Gao Z, Bandosz TJ, Zhao Z, Han M, Qiu J (2009) Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J Hazard Mater 167:357–365

    Article  CAS  Google Scholar 

  • Gee AR, Dudeney AWL (1988) Adsorption and crystallisation of gold at biological surfaces, in bio hydrometallurgy. In: Norris PR, Kelly DP (eds) Proceedings International Symposium, Science and Technology letters, Kew. Surrey, pp 437–451

    Google Scholar 

  • Ghazvini PTM, Ghorbanzadeh Mashkani S, Ghafourian H (2007) Bioabsorption of strontium from aqueous solution by new strain Bacillus sp. GTG-83. WM’07 conference, Tuscon, AZ

    Google Scholar 

  • Greene B, Darnall DW (1990) Microbial oxygenic photoautotrophs for metal-ion binding. In: Ehrlich HL, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 277–302

    Google Scholar 

  • Gupta VK, Tyagi I, Sadegh H, Shahryari-Ghoshekand R, Makhlouf ASH, Maazinejad B (2015) Nanoparticles as adsorbent a positive approach for removal of noxious metal ions: a review. Sci Technol Dev 34:195

    Article  Google Scholar 

  • Haas JR (1998) A comparison of U and lanthanide bioaccumulation by some common lichens. Geological Society of America, Annual meeting, Toronto 30:204–205

    Google Scholar 

  • Haas JR, Bailey EH, Purvis OW (1998) Bioaccumulation of metals by lichens; uptake of aqueous uranium by Peltigera membranancea as a function of time and pH. Am Mineral 83:1494–1502

    Article  CAS  Google Scholar 

  • Haferburg G, Merten D, Buchel G, Kothe E (2007) Bio-sorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rare earth element patterns in acid mine drainage. J Basic Microbiol 47:474–484

    Article  CAS  Google Scholar 

  • Hafez N, Abdel-Razek AS, Hafez MB (1997) Accumulation of some heavy metals on Aspergillus flavus. J Chem Technol Biotechnol 68:19–22

    Article  CAS  Google Scholar 

  • Heide EA, Wagener K, Paschke M, Wald M (1973) Extraction of uranium from sea water by cultured algae. Naturwissenschaften 60:431

    Article  CAS  Google Scholar 

  • Holan ZR, Volesky B, Prasetyo I (1993) Biosorption of cadmium by biomass of marine algae. Biotechnol Bioeng 41:819–825

    Article  CAS  Google Scholar 

  • Horikoshi T, Nakajima A, Sakaguchi T (1979) Uptake of uranium by Chlorella regularis. Agric Biol Chem 43:617–623

    CAS  Google Scholar 

  • Hsieh SH, Horng JJ (2007) Adsorption behavior of heavy metal ions by carbon nanotubes grown on microsized Al2O3 particles. J Univ Sci Technol Bejing Min Matel Mater 14:77–84

    CAS  Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331

    Article  CAS  Google Scholar 

  • International Atomic Energy Agency (1970) Standardization of radioactive waste categories. Technical reports series no. 101. International Atomic Energy Agency (IAEA), Vienna

    Google Scholar 

  • International Atomic Energy Agency (1994) Handling, treatment, conditioning and storage of biological radioactive wastes, IAEA-TECDOC-775, Vienna

    Google Scholar 

  • International Atomic Energy Agency (1999) Technologies for remediation of radioactively contaminated sites, Austria ISSN 1011-4289

    Google Scholar 

  • International Atomic Energy Agency (2001) Handling and processing of radioactive waste from nuclear applications. Technical reports series no. 402. International Atomic Energy Agency (IAEA), Vienna

    Google Scholar 

  • International Atomic Energy Agency (2006a) Application of thermal technologies for processing of radioactive waste. IAEA-TECDOC-1527. International Atomic Energy Agency (IAEA), Vienna

    Google Scholar 

  • International Atomic Energy Agency (2006b) Fundamental safety principals. IAEA safety standards series. SF-1. IAEA, Vienna

    Google Scholar 

  • International Atomic Energy Agency (2008) The management system for the processing, handling and storage of radioactive waste. Safety guide no. GS-G-3.3. International Atomic Energy Agency (IAEA), Vienna

    Google Scholar 

  • Iyer A, Jha B (2005) Biosorption of heavy metals by a marine bacterium. Mar Pollut Bull 50:340–343

    Article  CAS  Google Scholar 

  • Jang SC, Hong SB, Yang HM, Lee KW, Moon JK, Seo BK, Huh YS, Roh C (2014) Removal of radioactive cesium using Prussian blue magnetic nanoparticles. Nano 4:894–901

    Google Scholar 

  • Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298

    Article  CAS  Google Scholar 

  • Kaur M, Zhang H, Martin L, Todd T, Qiang Y (2013) Conjugates of magnetic nanoparticle actinide specific chelator for radioactive waste separation. Environ Sci Technol 47:11942–11959

    Article  CAS  Google Scholar 

  • Keskinkan O, Goksu MZL, Yuceer A, Basibuyuk M, Forster CF (2003) Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum). Process Biochem 39:179–183

    Article  CAS  Google Scholar 

  • Khalid AM, Ashfaq SR, Bhatti TM, Anwar MA, Shemsi AM, Akhtar K (1993) The uptake of microbially leached uranium by immobilized microbial biomass. In: Torma AE, Apel ML, Brierley CL (eds) Biohydrometallurgical technologies. In: Proceedings of the International Biohydrometallurgical Symposium, The Minerals, Metals and Materials Society, Warrendale, PA

    Google Scholar 

  • Khani M, Keshtkar A, Meysami B, Zarea M, Jalali R (2005) Biosorption of uranium from aqueous solutions by nonliving biomass of marine algae Cystoseira ical heterogeneity in an in situ uranium bioremediation field site. Appl Environ Microbiol 71:6308–6318

    Article  CAS  Google Scholar 

  • Koval’skiy VV, Vorotnitskaya IY (1965) Biogenic migration of uranium in Lake Issyk-Kul. Geokhimiya 6:724–732

    Google Scholar 

  • Kumar R, Acharya C, Joshi SR (2011) Isolation and analyses of Uranium tolerant Serretia marcescens strains and their utilization for aerobic Uranium U(VI) bioadsorption. J Microbiol 49:568–574

    Article  CAS  Google Scholar 

  • Kurniawan TA, Babel S (2003) A research study on Cr(VI) removal from contaminated wastewater using low-cost adsorbents and commercial activated carbon. In: Second International Conference on Energy Technology towards a Clean Environment (RCETE), vol 2. Phuket, Thailand, 12–14 February, pp 1110–1117

    Google Scholar 

  • Kuycak N, Volesky B (1988) Biosorbents for recovery of metals from industrial solutions. Biotechnol Lett 10:137

    Article  CAS  Google Scholar 

  • Lapkin A, Bozkaya B, Mays T, Borello L, Edler K, Crittenden B (2003) Preparation and characterization of chemisorbents based on heteropolyacids supported on synthetic mesoporous carbons and silica. Catal Today 81:611–621

    Article  CAS  Google Scholar 

  • Li YH, Wang S, Wei J, Zhang X, Xu C, Luan Z, Wu D, Wei B (2002) Lead adsorption on carbon nanotubes. Chem Phys Lett 357:263–266

    Article  CAS  Google Scholar 

  • Li YH, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wu D, Wei B (2003a) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41:2787–2792

    Article  CAS  Google Scholar 

  • Li YH, Wang Z, Luan J, Ding J, Xu C, Wu D (2003b) Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41:1057–1062

    Article  CAS  Google Scholar 

  • Li Y, Di Z, Ding J, Wu D, Luan Z, Zhu Y (2005) Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Wat Res 39:605–609

    Article  CAS  Google Scholar 

  • Li YH, Zhu Y, Zhao Y, Wu D, Luan Z (2006) Different morphologies of carbon nanotubes effect on the lead removal from aqueous solution. Diam Relat Mater 15:90–94

    Article  CAS  Google Scholar 

  • Liang P, Shi T, Li J (2004) Nanometer-size titanium dioxide separation/pre concentration and FAAS determination of trace Zn and cd in water sample. Int J Environ Anal Chem 84:315–321

    Article  CAS  Google Scholar 

  • Liu HH, Wu JT (1993) Uptake and recovery of americium and uranium by Anacystis biomass. J Environ Sci Health A Tox Hazard Subst Environ Eng 28:491–504

    Google Scholar 

  • Liu HL, Chen BY, Lan YW, Cheng YC (2004) Biosorption of Zn(II) and Cu(II) by the indigenous Thiobacillus thiooxidans. Chem Eng J 97:195–20

    Article  CAS  Google Scholar 

  • Lloyd JR, Yong P, Macaskie LE (2000) Biological reduction and removal of np(V) by two microorganisms. Environ Sci Technol 34:1297–1301

    Article  CAS  Google Scholar 

  • Lu C, Chiu H (2006) Adsorption of zinc(II) from water with purified carbon nanotubes. Chem Eng Sci 61:1138–1145

    Article  CAS  Google Scholar 

  • Lu C, Liu C (2006) Removal of nickel(II) from aqueous solution by carbon nanotubes. J Chem Technol Biotechnol 81:1932–1940

    Article  CAS  Google Scholar 

  • Lu C, Chiu H, Liu C (2006) Removal of zinc(II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind Eng Chem Res 45:2850–2855

    Article  CAS  Google Scholar 

  • Lu C, Liu C, Rao GP (2008) Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon. J Hazard Mater 151:239–246

    Article  CAS  Google Scholar 

  • Lujaniene G, Semcuk S, Kulakauskaite I, Mazeika K, Valiulis D, Juskenas R, Tautkus S (2016) Sorption of radionuclides and metals to graphene oxide and magnetic graphene oxide. J Radioanal Nucl Chem 307:2267–2275

    Article  CAS  Google Scholar 

  • Luo T, Cui J, Hu S, Huang Y, Jing C (2010) Arsenic removal and recovery from copper smelting wastewater using TiO2. Environ Sci Technol 44:9094–9098

    Article  CAS  Google Scholar 

  • Macaskie LE, Bonthrone KM, Yong P, Goddard DT (2000) Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology 146:1855–1867

    Article  CAS  Google Scholar 

  • Mann H, Fyfe WS (1984) An experimental study of algal uptake of U, Ba, V, Co and Ni from dilute solutions. Chem Geol 44:385–398

    Article  CAS  Google Scholar 

  • Mann H, Fyfe WS (1985) Uranium uptake by algae: experimental and natural environments. Can J Earth Sci 22:1899–1903

    Article  CAS  Google Scholar 

  • Manos MJ, Iyer RG, Quarez E, Liao JH, Kanatzidis MG (2005) {Sn[Zn4Sn4S17]}6−: a robust open framework based on metal-linked penta-supertetrahedral [Zn4Sn4S17]10− clusters with ion-exchange properties. Angew Chem 44:3552–3555

    Article  CAS  Google Scholar 

  • Mansouri N, Saberyan K, Noaparast M (2014) Adsorption of U(VI) from aqueous solution by Triocthylamine (TOA) functionalized magnetite nanoparticles as a novel adsorbent. J Adv Chem 10:2403–2414

    Article  Google Scholar 

  • Mattuschka B, Junghaus K, Straube G (1993) Biosorption of metals by waste biomass. In: Torma AE, Apel ML, Brierley CL (eds) Biohydrometallurgical technologies. Proceedings of the International Biohydrometallurgical Symposium, The Minerals, Metals and Materials Society, Warrendale, PA

    Google Scholar 

  • McCoy KB, Derecho I, Wong T, Tran HM, Huynh TD, La Duc MT, Venkateswaran K, Mogul R (2012) Insights into the extremotolerance of Acinetobacter radioresistens 50v1, a gram-negative bacterium isolated from the Mars Odyssey spacecraft. Astrobiology 12:854–862

    Article  CAS  Google Scholar 

  • McCready RGL, Lakshmanan VI (1986) Review of bioabsorption research to recover uranium from leach solutions in Canada. In: Eclles S (ed) Immobilisation of Ions by bio-sorption. Canada Centre for Mineral and Energy Technology, Energy Mines and Resources Canada, Ottawa, pp 219–225

    Google Scholar 

  • Méndez de Vigo GE (2000) Origin and radioactive waste management, In: Official College of Physicians Illustrious. 3rd edition. 105:188

    Google Scholar 

  • Mullen MD, Wolfe DC, Ferris FG, Beveridge TJ, Flemming CA, Bailey GW (1989) Bacterial sorption of heavy metal. Appl Environ Microbiol 55:3143–3149

    CAS  Google Scholar 

  • Mushtaq S, Yun SE, Yang JE, Jeong SW, Shim HE, Choi MH, Park SH, Choi YJ, Jeon J (2017) Efficient and selective removal of radioactive iodine anions using engineered nanocomposite membranes. Environ Sci Nano 4:2157–2163

    CAS  Google Scholar 

  • Nakajima A, Sakaguchi T (1986) Selective accumulation of heavy metals by microorganisms. Appl Microbiol Biotechnol 24:59–64

    CAS  Google Scholar 

  • Nandi D, Basu T, Debnath S, Ghosh AK, De A, Ghosh UC (2013) Mechanistic insight for the sorption of Cd(II) and Cu(II) from aqueous solution on magnetic Mn-doped Fe(III) oxide nanoparticle implanted graphene. J Chem Eng Data 58:2809–2818

    Article  CAS  Google Scholar 

  • Neu MP, Icopini GA, Boukhalfa H (2005) Plutonium speciation affected by environmental bacteria. Radiochim Acta 93:705–714

    Article  CAS  Google Scholar 

  • Niu H, Xu XS, Wang JH (1993) Removal of lead from aqueous solutions by Penicillium biomass. Biotechnol Bioeng 42:785–787

    Article  CAS  Google Scholar 

  • Norberg A, Persson H (1984) Accumulation of heavy metal ions by Zoogloea ramigera. Biotechnol Bioeng 26:239–246

    Article  CAS  Google Scholar 

  • Norberg A, Rydin S (1984) Development of a continuous process for metal accumulation by Zoogloea ramigera. Biotecnol Bioeng 26:265–268

    Article  CAS  Google Scholar 

  • Oscik J (1982) Adsorption. Chichester, Ellis Horwood Ltd. Publishers

    Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013) Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J Biol Sci 20:121–129

    Article  CAS  Google Scholar 

  • Ozaki T, Gillow JB, Kimura T, Ohnuki T, Yoshida Z, Francis AJ (2004) Sorption behavior of europium(III) and curium(III) on the cell surfaces of microorganisms. Radiochim Acta 92:741–748

    Article  CAS  Google Scholar 

  • Ozdemir G, Ceyhan N, Ozturk T, Akirmak F, Cosar T (2004) Biosorption of chromium(VI), cadmium(II) and copper(II) by Pantoea sp. TEM18. Chem Eng J 102:249–253

    Article  CAS  Google Scholar 

  • Pandey PK, Choubey S, Verrma Y, Pandey M, Chandrashekhar P (2009) Biosorptive removal of arsenic from drinking water. Bioresour Technol 100:634–637

    Article  CAS  Google Scholar 

  • Parida KM, Kanungo SB, Sant BR (1981) Studies on MnO2-I, chemical composition, microstructure and other characteristics of some synthetic MnO2 of various crystalline modifications. Electrochim Acta 26:435–443

    Article  CAS  Google Scholar 

  • Polman JK, Breckenridge CR (1996) Biomass-mediated binding and recovery of textile dyes from waste effluents. Text Chem Colour 28:31–35

    CAS  Google Scholar 

  • Pozhidaev YN, Panezhda EV, Grigor’eva OY, Kirillov AI, Belousova LI, Vlasova NN, Voronkov MG (2003) Carbofunctional Polyorganylsilsesquioxanes as sorbents for some rare metals. Dokl Chem 389:97–100

    Article  CAS  Google Scholar 

  • Prasad MNV, Oliveira Freitas HMD (2003) Metal hyperaccumulation in plants–biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:110–146

    Article  Google Scholar 

  • Pribil S, Marvan P (1976) Accumulation of uranium by the chlorococcal alga Scenedesmus quadricauda. Arch Hydrobiol Suppl 49:214–225

    CAS  Google Scholar 

  • Radiation Safety General Regulations (1988) Official Journal of the Federation, November 22

    Google Scholar 

  • Ramachandra TV, Ahalya N, Kanamadi RD (2005) Biosorption: techniques and mechanisms. CES Tchnical Rep 110:33

    Google Scholar 

  • Ramakrishna KR, Viraraghavan T (1997) Dye removal using low cost adsorbents. Water Sci Technol 36:189–196

    Article  CAS  Google Scholar 

  • Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58:224

    Article  CAS  Google Scholar 

  • Rastogi G, Osman S, Vaishampayan PA, Andersen GL, Stetler LD, Sani RK (2010) Microbial diversity in uranium mining-impacted soils as revealed by high-density 16S microarray and clone library. Microb Ecol 59:94–108

    Article  CAS  Google Scholar 

  • Roig MG, Manzano T, Diaz M (1997) Biochemical process for the removal of uranium from acid mine drainages. Water Res 31:2073–2083

    Article  CAS  Google Scholar 

  • Rudd T, Sterritt RM, Lester JN (1984) Formation and conditional stability constants of complexes formed between heavy metals and bacterial extracellular polymers. Water Res 18:379–384

    Article  CAS  Google Scholar 

  • Ruparelia JP, Duttagupta SP, Chatterjee AK, Mukherji S (2008) Potential of carbon nanomaterials for removal of heavy metals from water. Desalination 232:145

    Article  CAS  Google Scholar 

  • Sao K, Khan F, Pandey PK, Pandey M (2014) A review on heavy metals uptake by plants through biosorption. Intl Proc Econ Develop Res 75:78

    Google Scholar 

  • Schneider IAH, Rubio J (1999) Sorption of heavy metal ions by the non-living biomass of freshwater macrophytes. Environ Sci Tech 33:2213–2217

    Article  CAS  Google Scholar 

  • Schneider IAH, Rubio J, Smith RW (1999) Effect of some mining chemicals on biosorption of Cu(II) by the non-living biomass of the freshwater macrophyte Potamogeton lucens. Miner Eng 12:255–260

    Article  CAS  Google Scholar 

  • Shashkova IL, Rat’ko AI, Mil’vit NV, Muravitskaya EV (2009) The use of chemisorption technologies in separation of multicomponent mixtures of metal ions. Russ J Appl Chem 82:940–946

    Article  CAS  Google Scholar 

  • Shelobolina ES, Sullivan SA, O’Neill KR, Nevin KP, Lovley DR (2004) Isolation, characterization, and U(VI)-reducing potential of a facultatively anaerobic, acid-resistant bacterium from low-pH, nitrate- and U(VI)-contaminated subsurface sediment and description of Salmonella subterranea sp. nov. Appl Environ Microbiol 70:2959–2965

    Article  CAS  Google Scholar 

  • Siegel S, Keller P, Galun M, Lehr H, Siegel B, Galun B (1986) Biosorption of lead and chromium by Penicillium preparations. Water Air Soil Pollut 27:69–75

    Article  CAS  Google Scholar 

  • Singh S, Barick KC, Bahadur D (2013) Fe3O4 embedded ZnO nanocomposites for the removal of toxic metal ions, organic dyes and bacterial pathogens. J Mater Chem A 1:3325–3333

    Article  CAS  Google Scholar 

  • Sobolev LA (1994) Radiation anomalies in Moscow region. Ecomaz, Moscow 52

    Google Scholar 

  • Songakasiri K, Reed DT, Rittmann BE (2002) Biosorption of neptunium(V) by Pseudomonas fluorescens. Radiochim Acta 90:785–789

    Google Scholar 

  • Sposito G (1982) On the surface complexation model of the oxide aqueous solution interface. J Coll Interf Sci 91:329–340

    Article  Google Scholar 

  • Sposito G (1986) Distinguishing adsorption from surface precipitation. Geochem Process Miner Surf 323:217–228

    Article  CAS  Google Scholar 

  • Stafiej A, Pyrzynska K (2007) Adsorption of heavy metal ions with carbon nanotubes. Sep Purif Technol 58:49

    Article  CAS  Google Scholar 

  • Stuetz RM, Madgwick JC, Gee AR (1993) Immobilisation of biosorbed metal ions. In: Torma AE, Apel ML, Brierley CL (eds) Biohydrometallurgical technologies. Proceedings of the International Biohydrometallurgical Symposium, The Minerals, Metals and Materials Society, Warrendale, PA

    Google Scholar 

  • Stumm W (1992) Chemistry of the solid-water Interface: processes at the mineral-water and particle-water Interface in natural systems. Wiley, Canada

    Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley, New York

    Google Scholar 

  • Townsley CC, Ross IS, Atkins AS (1986) Biorecovery of metallic residues from various industrial effluents using filamentous fungi. In: Lawrence RW, Branion RMR, Ebner HG (eds) Fundamental and applied biohydrometallurgy. Elsevier, Amsterdam, pp 279–289

    Google Scholar 

  • Tsezos M, Volesky B (1982) The mechanism of thorium biosorption by Rhizopus arrhizus. Biotechnol Bioeng 24:955–969

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (2000) Introduction to phytoremediation. National Risk Management Research Laboratory, EPA/600/R-99/107

    Google Scholar 

  • Uheida A, Iglesias M, Fontas C, Hidalgo M, Salvado V, Zhang Y, Muhammed M (2006) Sorption of Palladium(II), Rhodium(III), and Platinum(IV) on Fe3O4 nanoparticles. J Coll Interf Sci 301:402–408

    Article  CAS  Google Scholar 

  • Visa M, Duta A (2013) TiO2/fly ash novel substrate for simultaneous removal of heavy metals and surfactants. Chem Eng J 223:860–868

    Article  CAS  Google Scholar 

  • Volesky B (1990) Biosorption of heavy metals. CRC Press, Boston, November. ISBN 0849349176, 408

    Google Scholar 

  • Volesky B, Prasetyo I (1994) Cadmium removal in a biosorption column. Biotechnol Bioeng 43:1010–1015

    Article  CAS  Google Scholar 

  • Volesky B, Sezos M (1982) Separation of uranium by biosorption. Biotechnol Bioeng 23:583–604

    Google Scholar 

  • Voronkov MG, Vlasova NN, Pozhidaev YN (1996) Organosilicon ion-exchange and complexing sorbents. Zh Prikl Khim 69:705–718

    CAS  Google Scholar 

  • Voronkov MG, Vlasova NN, Pozhidaev YN (2000) Organosilicon ion exchange and complexing adsorbents. Appl Organomet Chem 14:287–303

    Article  CAS  Google Scholar 

  • Wang TC, Weissman JC, Ramesh G, Varadarajan R, Benemann JR (1996) Parameters for removal of toxic heavy metals by water milfoil (Myriophyllum spicatum). Bull Environ Cont Toxicol 57:779–786

    Article  CAS  Google Scholar 

  • Wang X, Cai W, Lin Y, Wang G, Liang C (2010) Mass production of micro/nanostructured porous ZnO plates and their strong structurally enhanced and selective adsorption performance for environmental remediation. J Mater Chem 20:8582–8590

    Article  CAS  Google Scholar 

  • Wase J, Forster CF (1997) Biosorbents for metal ions. Taylor & Francis, London pp 238

    Google Scholar 

  • Watson JHP, Croudace IW, Warwick PE, James PAB, Charnock JM, Ellwood DC (2001) Adsorption of radioactive metals by strongly magnetic iron sulfide nanoparticles produced by sulfate-reducing bacteria. Sep Sci Technol 36:2571–2607

    Article  CAS  Google Scholar 

  • Witek-Krowiak A, Szafran RG, Modelski S (2010) Biosorption of heavy metals from aqueous solutions onto peanut shell as a lowcost biosorbent. Desalination 265(1–3):126–134

    Article  CAS  Google Scholar 

  • Xie S, Yang J, Chen C, Zhang X, Wang Q, Zhang C (2008) Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii. J Environ Radioact 99:126–133

    Article  CAS  Google Scholar 

  • Xu M, Wei G, Liu N, Zhou L, Fu C, Chubik MP, Chubik MP, Gromov A, Han W (2014) Novel fungus-titanate bio-nanocomposites as high performance adsorbents for the efficient removal of radioactive ions from wastewater. Nanoscale 6:722–725

    Article  CAS  Google Scholar 

  • Yang J, Volesky B (1999) Biosorption of uranium on Sargassum biomass. Water Res 33:3357–3363

    Article  CAS  Google Scholar 

  • Yantasee W, Rutledge RD, Chouyyok W, Sukwarotwat V, Orr G, Warner CL, Warner MG, Fryxell GE, Wiacek RJ, Timchalk C, Addleman RS (2010) Functionalized nanoporous silica for the removal of heavy metals from biological systems: adsorption and application. ACS Appl Mater Interf 2:2749–2758

    Article  CAS  Google Scholar 

  • Yousefi T, Khanchi AR, Ahmadi SJ, Rofouei MK, Yavari R, Davarkhah R, Myanji B (2012) Cerium(III) molybdate nanoparticles: synthesis, characterization and radionuclides adsorption studies. J Hazard Mater 215-216:266–271

    Article  CAS  Google Scholar 

  • Zhou YT, Nie HL, White CB, He ZY, Zhu LM (2009) Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with aketoglutaric acid. J Colloid Interface Sci 330:29–37

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, S.R., Kalita, D. (2019). Biological, Chemical and Nanosorption Approaches in Remediation of Metal Wastes. In: Gupta, D., Voronina, A. (eds) Remediation Measures for Radioactively Contaminated Areas. Springer, Cham. https://doi.org/10.1007/978-3-319-73398-2_5

Download citation

Publish with us

Policies and ethics