Skip to main content

A Short History of Computing Devices from Schickard to de Colmar: Emergence and Evolution of Ingenious Ideas and Technologies as Precursors of Modern Computer Technology

  • Chapter
  • First Online:
Computations and Computing Devices in Mathematics Education Before the Advent of Electronic Calculators

Part of the book series: Mathematics Education in the Digital Era ((MEDE,volume 11))

Abstract

Even the brief analysis of the history of the invention of mechanical computing devices from the 17th to early 20th centuries that we provide in this chapter demonstrates the rich potential available to mathematics educators today. The first devices designed by Schickard and Pascal showed a technological complexity when dealing with the issue of representing even simple arithmetic operations, such as addition, by means of gears and wheels. The knowledge they developed, along with the ideas they did not succeed to put in practice, inspired further generations of inventors who not only pursued the search for better aids for calculation practices but also envisioned novel mathematical structures allowing for a more universal approach to computing which, along with technological know-how, eventually led to the modern era of electronic computers, the Internet, and other digital tools and technology-rich environments. At the end of the chapter, we explore the educational potential of this historical development.

On a toujours cherché les moyens de diminuer la fatigue d’esprit et d’abréger le temps qu’entrainent les opérations arithmétiques (People always looked for ways to make the spirit less tired and to reduce the time taken by arithmetic operations).

Louis Thomas (Chevalier de Colmar) 1852

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For more details about the complex history of this invention, see, for example, Cajory (1909).

  2. 2.

    Notice necessary to those who will have the curiosity to see the arithmetical machine and to use it.

  3. 3.

    Sir Bulstrode Whitelocke (1605–1675) was Head of the English diplomatic mission in Sweden in 1653; Morland took part in that mission.

  4. 4.

    For a detailed historical outline of the binary system, in general, and prior to Leibniz, in particular, see Glaser (1981), Chap. 2.

  5. 5.

    Durand-Richard (2010, p. 293).

  6. 6.

    “M. de Prony s’était engagé avec les comités de gouvernement, à composer pour la division centésimale du cercle, des tables logarithmiques et trigonométriques, qui, non-seulement ne laissassent rien à désirer quant à l’exactitude, mais qui formassent le monument de calcul le plus vaste et le plus imposant qui eût jamais été exécuté, ou même conçu” (Anon. 1820, p. 7, cited by Babbage 1832, p. 155; Babbage 1961, p. 316).

  7. 7.

    Reuleaux, Franz (1829–1905).

  8. 8.

    A calculating machine built based on Odhner’s principles by Grimme, Natalis & Co (founded in 1871) in Germany (Braunschweig). The manufacture was led by Franz Trinks (1852–1931) who was also inventor of the Trinks-Arithmotyp, a key-driven mechanical calculator (Lenz 1924, p. 76).

  9. 9.

    Another name used for a bead abacus.

  10. 10.

    For more on modern development, see Martinovich’s chapter in this book.

References

  • Ageron, P. 2016. L’arithmomètre de Thomas: sa réception dans les pays méditerranéens (1850–1915), son intérêt dans nos salles de classe. In Proceedings of the 2016 ICME Satellite Meeting of the International Study Group on the Relations Between the History and Pedagogy of Mathematics, ed. L. Radford, F. Furinghetti, and T. Hausberger, 655–670. Montpellier, France: IREM de Montpellier.

    Google Scholar 

  • Anon. 1820. Note sur la publication proposée par le gouvernement anglais des grandes tables logarithmiques et trigonométriques de M. de Prony. Paris: Didot.

    Google Scholar 

  • Babbage, C. 1832. On the economy of machinery and manufactures. London: Knight.

    Google Scholar 

  • Babbage, C. 1961. On the division of mental labour. In On the principles of and development of calculator, ed. P. Morison and E. Morrison, 315–321. New York: Dover Publications Inc.

    Google Scholar 

  • Bacon, F. 1623. De dignitate & augmentis scientiarum. London: J. Haviland.

    Google Scholar 

  • Bacon, F. 1640. Of the advancement and proficience of learning. Oxford: L. Lichfield. [The first English translation of Bacon 1623.].

    Google Scholar 

  • Baker, C. 1839. Infant schools. In Central society of education, vol. 3, 1–48. London: Taylor and Walton.

    Google Scholar 

  • Beeson, M. J. 2004. The mechanization of mathematics. In Alan Turing: Life and legacy of a great thinker, ed. C. Teuscher, 77–134. Berlin-Heidelberg-New York: Springer.

    Chapter  Google Scholar 

  • Belanger, J., and D. Stein. 2005. Shadowy vision: Spanners in the mechanization of mathematics. Historia Mathematica 32 (1): 76–93.

    Article  Google Scholar 

  • Bloch, L. 2016. Informatics in the light of some Leibniz’s works. Paper presented at XB2 Xenobiology Conference, Berlin.

    Google Scholar 

  • Blikstein, P. 2013. Digital fabrication and “making” in education: The democratization of invention. In FabLabs: Of machines, makers and inventors, ed. J. Walter-Herrmann and C. Buching, 1–21. Bielefeld: Transcript Publishers.

    Google Scholar 

  • Bradis, V.M. [Бpaдиc B. M.]. 1929. Пpиближeнныe вычиcлeния [Priblizhennye vychisleniya] (Approximative calculations). In Ha пyтяx к пeдaгoгичecкoмy caмooбpaзoвaнию: Ha пyтяx мaтeмaтики [Na putyakh k pedagogicheskomu samoobrazovaniyu: Na putyakh matematiki] (Various approaches to the self-directed pedagogical studies: Ways to mathematics), ed. M.M. Rubinschtein [M.M. Pyбинштeйн], 87–116. Moscow: Mir.

    Google Scholar 

  • Cajory, F. 1909. A history of the logarithmic slide rule and allied instruments. New York: The Engineering News Publishing Company & London: Archibald Constable & Co.

    Google Scholar 

  • Campbell-Kelly, M., W. Aspray, N.L. Ensmenger, and J.R. Yost. 2013. Computer: A history of the information machine. Boulder: Westview Press.

    Google Scholar 

  • Chazal, G. 2002. Les réseaux du sens: De l’informatique aux neurosciences. Revue Philosophique de Louvain 100 (1): 321–324.

    Google Scholar 

  • Cole, J.R. 1995. Pascal: The man and his two loves. New York: New York University Press.

    Google Scholar 

  • Cortada, J.W. 1993. Before the computer: IBM, NCR, Burroughs, and Remington Rand and the industry they created, 1865–1956. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Cragon, H.G. 2000. Computer architecture and implementation. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Davis, M. 2000. Engines of logic: Mathematicians and the origin of the Computer. New York: W. W. Norton & Company.

    Google Scholar 

  • Diderot, D., and J.-B. le Rond d’Alembert (Eds.). 1751[-1772]. Encyclopédie, ou dictionnaire raisonné des sciences, des arts et des métiers. Paris: Briasson et al.

    Google Scholar 

  • Durand-Richard, M.-J. 2010. Le regard français de Charles Babbage (1791–1871) sur le “déclin de la science en Angleterre.” Documents pour l’histoire des techniques 19 (2): 287–304.

    Google Scholar 

  • Freeth, T. 2002. The Antikythera Mechanism: 2. Is it Posidonius’ Orrery? Mediterranean Archaeology and Archaeometry 2 (2): 45–58.

    Google Scholar 

  • Freeth, T. 2014. Eclipse prediction on the ancient Greek astronomical calculating machine known as the Antikythera mechanism. PLoS ONE 9 (7): e103275.

    Article  Google Scholar 

  • Freeth, T., A. Jones, J.M. Steele, and Y. Bitsakis. 2008. Calendars with Olympiad display and eclipse prediction on the Antikythera mechanism. Nature 454 (7204): 614–617.

    Article  Google Scholar 

  • Glaser, A. 1981. History of binary and other nondecimal numeration. Los Angeles: Tomash Publishers.

    Google Scholar 

  • Graf, K.-D. 1995. Promoting interdisciplinary and intercultural intentions through the history of informatics. In Integrating information technology into education, ed. D. Watson and D. Tinsley, 139–150. Dordrecht: Springer Science + Business Media. https://doi.org/10.1007/978-0-387-34842-1.

    Chapter  Google Scholar 

  • Green, C.D. 2005. Was Babbage’s analytical engine intended to be a mechanical model of the mind? History of Psychology 8 (1): 35–45.

    Article  Google Scholar 

  • Halliwell, J.O. 1838. A brief account of the life, writings, and inventions of Sir Samuel Morland, Master of Mechanics to Charles The Second. Cambridge: Metcalfe & Palmer.

    Google Scholar 

  • Horsburgh, E.M. 1914. Modern instruments and methods of calculation: A handbook of the Napier tercentenary exhibition. London: G. Bell & Sons.

    Google Scholar 

  • Jackson, L.L. 1906. The educational significance of sixteenth century arithmetic from the point of view of the present time. New York: Teachers College, Columbia University.

    Google Scholar 

  • Johnston, S. 1996. The identity of the mathematical practitioner in 16th-century England. In Der ‘mathematicus’: Zur Entwicklung und Bedeutung einer neuen Berufsgruppe in der Zeit Gerhard Mercators (Duisburger Mercator-Studien), ed. I. Hantsche, 93–120. Bochum: Brockmeyer.

    Google Scholar 

  • Johnston-Wilder, S., and D. Pimm. 2004. Teaching secondary mathematics with ICT. Maidenhead: Open University Press.

    Google Scholar 

  • Jones, M. 2016. Reckoning with matter: Calculating machines, innovation and thinking about thinking from Pascal to Babbage. Chicago: Chicago University Press.

    Book  Google Scholar 

  • Kidwell, P.A., A. Ackerberg-Hastings, and D.L. Roberts. 2008. Tools of American Mathematics Teaching, 1800–2000. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Lardner, D. 1834. Babbage’s calculating engine. Edinburgh Review 59: 264–327.

    Google Scholar 

  • Leibniz, G.W. 1685/1929. Leibniz on his calculating machine (Translated from Latin by Mark Kormes). In A Source Book in Mathematics, ed. D.E. Smith, 173–181. New York: McGraw-Hill.

    Google Scholar 

  • Leibniz [= Leibniz, G.W.] 1703 [1720]. Explication de l’arithmétique binaire qui se sert des seuls caractères 0 & 1; avec des remarques sur son utilité, & sur ce qu’elle donne le sens des anciennes figures Chinoises de Fohy. Histoire de l'Académie royale, des sciences, avec les mémoires de mathématique & de physique, [section “Mémoires”,] 85–89.

    Google Scholar 

  • Lenz, K. 1924. Die Rechenmaschinen und das Maschinenrechnen. Wiesbaden: Springer.

    Chapter  Google Scholar 

  • Lions, J.-L. 1991. De la machine à calculer de Pascal aux ordinateurs. La Vie des sciences 3: 221–240.

    Google Scholar 

  • Lister, M., J. Dovey, S. Giddings, I. Grant, and K. Kelly. 2009. New media: A critical introduction. London and New York: Routledge.

    Google Scholar 

  • Marguin, J. 1997. L’arithmomètre de Thomas n° 1398. Bulletin de la Sabix 18: 31–42.

    Google Scholar 

  • Markushevich, A.I., A.Y. Hinchin, and P.S. Alexandrov [Mapкyшeвич, A. И., A. Я. Xинчин, П. C. Aлeкcaндpoв]. 1951. Энциклoпeдия элeмeнтapнoй мaтeмaтики [Entsiklopediya elementarnoĭ matematiki] (Encyclopedia of elementary mathematics). Moscow & Leningrad: GTTL.

    Google Scholar 

  • Maschietto, M. 2013. Systems of instruments for place value and arithmetical operations: An exploratory study with the Pascaline. Education 3 (4): 221–230.

    Google Scholar 

  • Mayo, E., and C. Mayo. 1837. Practical remarks on infant education, for the use of schools and private families. London: Seeley and Co.

    Google Scholar 

  • Menabrea, L.F. 1842. Notions sur la machine analytique de M. Charles Babbage. Bibliothèque universelle de Genève 41: 352–376.

    Google Scholar 

  • Morar, F.-S. 2015. Reinventing machines: The transmission history of the Leibniz calculator. British Society for the History of Science 48 (1): 123–146.

    Article  Google Scholar 

  • Mosconi, J. 1983. Charles Babbage: vers une théorie du calcul mécanique. Revue d’histoire des sciences 36 (1): 69–107.

    Article  Google Scholar 

  • Myers, G.W. 1903. The laboratory method in the secondary school. The School Review 11 (9): 727–741.

    Article  Google Scholar 

  • Nepero, I. (Napier, J.). 1614. Mirifici logarithmorum canonis descriptio. Edinburgum: A. Hart.

    Google Scholar 

  • Nepero, I. (Napier, J.). 1617. Rabdologiae seu numerationis per virgulas libri duo: cum appendice de expeditissimo multiplicationis promptuario. Edinburgum: A. Hart.

    Google Scholar 

  • Nordhaus, W.D. 2007. Two centuries of productivity growth in computing. The Journal of Economic History 67 (1): 128–159.

    Article  Google Scholar 

  • Pascal, B. 1645/1998. Lettre dedicatoire a Monseigneur le Chancelier sure le sujet de la Machine nouvellement inventée par le Sieur B.P. pour faire toutes sortes d’operations d’Arithmetique, par un mouvement reglé, sans plume ny jettons, avec un advis necessaire à ceux qui auront la curiosité de voir ladite Machine, et de s’en servir. [n.p.] (Reprinted in B. Pascal, Œuvres complètes. Tome 1. Paris: Édition de Michel Le Guern.).

    Google Scholar 

  • Poisard, C. 2006. The notion of carried-number, between the history of calculating instruments and arithmetic. Proceedings of the Annual Conference of Mathematics Education Research Group of Australasia (MERGA), 2, pp. 416–423.

    Google Scholar 

  • Project 2061. 1989. Science for all Americans: A Project 2061 report on literacy goals in science, mathematics, and technology. Washington, D.C.: American Association for the Advancement of Science.

    Google Scholar 

  • Rabardel, P. 1995. Les hommes et les technologies, une approche cognitive des instruments contemporains. Paris: Armand Colin.

    Google Scholar 

  • Raloff, J. 1982. On Beyond Babbage: The Rise of Automatic Digital Computers. Science News 121: 170–172.

    Article  Google Scholar 

  • Ratcliff, J.R. 2007. Samuel Morland and his calculating machines c.1666: The early career of a courtier–inventor in Restoration London. British Society for the History of Science 40 (2): 159–179.

    Article  Google Scholar 

  • Reuleaux, F. 1861. Der Constructeur: Ein Handbuch zum Gebrauch beim Maschinen-Entwerfen. Braunschweig: Friedrich Vieweg und Sohn.

    Google Scholar 

  • Ryan, J.A. 1996. Leibniz’ binary system and Shao Yong’s “Yijing”. Philosophy East and West 46 (1): 59–90.

    Article  Google Scholar 

  • Sawday, J. 2007. Engines of the imagination: Renaissance culture and the rise of the machine. Abingdon: Routledge.

    Book  Google Scholar 

  • Schlauch, W.S. 1940. The use of calculating machines in teaching arithmetic. The Mathematics Teacher 33 (1): 35–38.

    Google Scholar 

  • Sonnenschein, W.S. 1879. Description of Sonnenschein’s number-pictures, arithmometer and blackboard: their construction and use. London: W. Swan Sonnenschein.

    Google Scholar 

  • Taton, R. 1963. Sur l’invention de la machine arithmétique. Revue d’histoire des sciences et de leurs applications 16 (2): 139–160.

    Article  Google Scholar 

  • Temam, D. 2009. La pascaline, la “machine qui relève du défaut de la mémoire.” Bibnum. Retrieved from: http://bibnum.revues.org/548.

  • Tent, M.B.W. 2012. Gottfried Wilhelm Leibniz: The polymath who brought us calculus. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Trouche, L. 2005. Des artefacts aux instruments, une approche pour guider et intégrer les usages des outils de calcul dans l’enseignement des mathématiques. Actes de l’université d’été de Saint-Flour, pp. 265–290.

    Google Scholar 

  • Vygotsky, L.S. 1978. Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Walford, C. 1871. The insurance cyclopaedia. London: Layton.

    Google Scholar 

  • Wiener, N. 1988/1950. The human use of human beings: Cybernetics and society. New York: Da Capo Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Freiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Freiman, V., Robichaud, X. (2018). A Short History of Computing Devices from Schickard to de Colmar: Emergence and Evolution of Ingenious Ideas and Technologies as Precursors of Modern Computer Technology. In: Volkov, A., Freiman, V. (eds) Computations and Computing Devices in Mathematics Education Before the Advent of Electronic Calculators. Mathematics Education in the Digital Era, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-73396-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73396-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73394-4

  • Online ISBN: 978-3-319-73396-8

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics