Skip to main content

Landslide Inventory, Sampling and Effect of Sampling Strategies on Landslide Susceptibility/Hazard Modelling at a Glance

  • Chapter
  • First Online:
Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques

Part of the book series: Advances in Natural and Technological Hazards Research ((NTHR,volume 48))

Abstract

Landslides have a significant portion of responsibility on the damages and losses caused by natural hazards such as earthquakes, floods, storms, and tsunamis all over the world. Thus, landslides and their consequences are of great importance among the scientists and authorities who want to minimize these effects for a long time. This procedure simply begins with the preparation of landslide database and inventory maps, which constitutes a fundamental basis for the further steps including landslide susceptibility, hazard, and risk assessments. In this aspect, this procedure can be considered as one of the most important stages for any landslide work to minimize the undesired consequences of landslides. This stage can be realized using some statistical techniques such as simple random, systematic, stratified and cluster sampling strategies in the literature. In this chapter, firstly, basic landslide definitions and concepts were discussed. Then, landslide inventory, susceptibility and hazard concepts were pointed out and linked to the sampling strategies with the recent literature. Although, every considered method has pros and cons, it could be concluded that the sampling carried out in the rupture zones of landslides as polygon features or seed cell approach representing the pre-failure conditions seem to be more realistic to obtain more accurate maps. The other important issue pointed out in this chapter is on the selection of data mining technique(s). Since landslides are complex processes and can be affected by many factors, this stage is very important to reflect the landslide conditions with huge amount of data. In many cases, the researchers generally encounter to struggle with huge amount of data related to the landslide initiation and/or mechanisms. Thus, the selection of data mining techniques deserve the necessary precaution and is elaborately discussed overall the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonini G, Cardinali M, Guzzetti F, Reichenbach P, Sorrentino A (1993) Carta Inventario dei Fenomeni Franosi della Regione Marche ed aree limitrofe. CNR, Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche, Publication n. 580, 2 sheets, scale 1:100,000, (in Italian)

    Google Scholar 

  • Baeza C (1994) Evaluación de las condiciones de rotura y la movilidad de los deslizamientos superficiales mediante el uso de técnicas de análisis multivariante, Tesis Univ. Pol. Catalunya

    Google Scholar 

  • Balteanu D, ChendeÅŸ V, Sima M, Enciu P (2010) A country-wide spatial assessment of landslide susceptibility in Romania. Geomorphology 124:102–112

    Article  Google Scholar 

  • Barredo JJ, Benavides A, Hervas J, Van Westen CJ (2000) Comparing heuristic landslide hazard assessment techniques using GIS in the Trijana basin, Gran Canaria Island, Spain. JAG 2(1):9–23

    Article  Google Scholar 

  • Bednarik M, Yilmaz I, Marschalko M (2012) Landslide hazard and risk assessment: a case study from the Hlohovec-Sered landslide area in south-west Slovakia. Nat Hazards 64(1):547–575

    Article  Google Scholar 

  • Borzyszkowski AM, Sokolowski S (eds) (1993) Mathematical foundations of computer science 1993. in 18th international symposium, MFCS’93 Gdansk, Poland, August 30–September 3, 1993 Proceedings, Lecture Notes in Computer Science, vol 711, pp 281–290

    Google Scholar 

  • Brabb EE (1991) The world landslide problem. Episodes 14(1):52–61

    Google Scholar 

  • Brabb EE, Pampeyan EH (1972) Preliminary map of landslide deposits in San Mateo County, California. U.S. Geological Survey Miscellaneous Field Studies Map, MF-344

    Google Scholar 

  • Brabb EE, Pampeyan EH, Bonilla M (1972) Landslide susceptibility in the San Mateo County, California, scale 1: 62.500, U.S. Geol. Survey Misc. Field Studies Map MF344

    Google Scholar 

  • Brabb EE, Wieczorek GF, Harp EL (1989) Map showing 1983 landslides in Utah. U.S. Geological Survey Miscellaneous Field Studies Map MF-1867

    Google Scholar 

  • Cardinali M, Guzzetti F, Brabb EE (1990) Preliminary map showing landslide deposits and related features in New Mexico. U.S. Geological Survey Open File Report 90/293, 4 sheets, scale 1:500,000

    Google Scholar 

  • Cardinali M, Antonini G, Reichenbach P, Guzzetti F (2001) Photo geological and landslide inventory map for the Upper Tiber River basin. CNR, Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche, Publication n. 2116, scale 1:100,000

    Google Scholar 

  • Cardinali M, Carrara A, Guzzetti F, Reichenbach P (2002) Landslide hazard map for the Upper Tiber River basin. CNR, Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche, Publication n. 2634, scale 1:100,000

    Google Scholar 

  • Cardinali M, Galli M, Guzzetti F, Ardizzone F, Reichenbach P, Bartoccini P (2006) Rainfall induced landslides in December 2004 in south-western Umbria, central Italy: types, extent, damage and risk assessment. Nat Hazards Earth Syst Sci 6:237–260

    Article  Google Scholar 

  • Carrara A (1983) Multivariate models for landslide hazard evaluation. Math Geol 15(3):403–426

    Article  Google Scholar 

  • Carrara A, Cardinalli M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statitistical models in evaluating landslide hazards. Earth Surf Proc Land 16:427–445

    Article  Google Scholar 

  • Carrara A, Crosta G, Frattini P (2003) Geomorphological and historical data in assessing landslide hazard. Eart Surf Processes Land 28:1125–1142

    Article  Google Scholar 

  • Cascini L, Critelli S, Gulla G, Di Nocera S (1991) A methodological approach to landslide hazard assessment: a case history. In: Proceedings of 16th international landslide conference. Balkema, Rotterdam, pp 899–904

    Google Scholar 

  • Chacón J, Irigaray C, Fernández T (1994) Large to middle scale landslide inventory, analysis and mapping with modelling and assessment of derived susceptibility, hazards and risks in a GIS. In: Proceedings of 7th IAEG congress, Balkema, Rotterdam, Holland, pp 4669–4678

    Google Scholar 

  • Chacón J, Irigaray C, Fernández T (1996) From the inventory to the risk analysis: improvements to a large scale GIS method. In: Chacón J, Irigaray C, Fernández T (eds), Proceedings of 8th international conference and field workshop on landslides, Balkema, Rotterdam, Holland, pp 335–342

    Google Scholar 

  • Chung CF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogram Eng Remote Sens 65(12):1389–1399

    Google Scholar 

  • Chung CF, Fabbri AG, Van Westen CJ (1995) Multivariate regression analysis for landslide hazard zonalition. In: Carrara A, Guzetti F (eds) Geographical informations systems in assessing natural hazards. Kluwer Publishers, Dordrecht

    Google Scholar 

  • Clerici A, Perego S, Tellini C, Vescovi P (2006) A GIS-based automated procedure for landslide susceptibility mapping by the conditional Analysis method: the Baganza valley case study (Italian Northern Apennines). Environ Geol 50(7):941–961

    Article  Google Scholar 

  • Cochran WG (1977) Sampling techniques, 3rd edn. Wiley. ISBN 0-471-16240-X

    Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation. Transportation research board, US National Research Council. Special Report 247, Washington, DC, Chapter 3, pp 36–75

    Google Scholar 

  • Dai FC, Lee CF (2003) A spatiotemporal probabilistic modelling of storm induced shallow landsliding using aerial photographs and logistic regression. Earth Surf Proc Land 28:527–545

    Article  Google Scholar 

  • Dai FC, Lee CF, Zhang XH (2001) GIS-based geo-environmental evaluation for urban land-use planning: a case study. Eng Geol 61:257–271

    Article  Google Scholar 

  • De Graff JV, Romesburg HC, Ahmad R, McCalpin JP (2012) Producing landslide-susceptibility maps for regional planning in data-scarce regions. Nat Hazards 64:729–749

    Article  Google Scholar 

  • DeGraff J, Romesburg H (1980) Regional landslide-susceptibility assessment for wildland management: a matrix approach. In: Coates D, Vitek J (eds) Thresholds in geomorphology. George Allen and Unwin, London, pp 401–414

    Google Scholar 

  • Delaunay J (1981) Carte de France des zones vulnèrables a des glissements, écroulements, affaissements et effrondrements de terrain. Bureau de Recherches Géologiques et Minières, 81. SGN 567 GEG, 23 p., (in French)

    Google Scholar 

  • Duman TY, Çan T, Emre Ö, Keçer M, DoÄŸan A, Åžerafettin A, Serap D (2005) Landslide inventory of northwestern Anatolia, Turkey. Eng Geol 77(1–2):99–114

    Article  Google Scholar 

  • Ercanoglu M, Dagdelenler G, Özsayin E, Alkevli T, Sönmez H, Özyurt NN, Kahraman B, Uçar Ä°, Çetinkaya S (2016) Application of Chebyshev theorem to data preparation in landslide susceptibility mapping studies: an example from Yenice (Karabük, Turkey) region. J Mt Sci 13(11):1923–1940

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98

    Article  Google Scholar 

  • Fernández T, Irigaray C, Hamdouni RE, Chacón J (2003) Methodology for landslide susceptibility mapping by means of a GIS. Application to the Contraviesa area (Granada, Spain). Nat Hazards 30:297–308

    Article  Google Scholar 

  • Galli M, Ardizzone F, Cardinali M, Guzzetti F, Reichenbach P (2008) Comparing landslide inventory maps. Geomorphology 94:268–289

    Article  Google Scholar 

  • Gokceoglu C, Aksoy H (1996) Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing technique. Eng Geol 44:147–161

    Article  Google Scholar 

  • Guzzetti F, Cardinali M, Reichenbach P (1996) The influence of structural setting and lithology on landslide type and pattern. Environ Eng Geosci 2(4):531–555

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72:272–299

    Article  Google Scholar 

  • Guzzetti F, Galli M, Reichenbach P, Ardizzone F, Cardinali M (2006a) Landslide hazard assessment in the Collazzone area, Umbria, central Italy. Nat Hazards Earth Syst Sci 6:115–131

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006b) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184

    Article  Google Scholar 

  • Guzzetti F, Ardizzone F, Cardinali M, Galli M, Reichenbach P (2008) Distribution of landslides in the Upper Tiber River basin, central Italy. Geomorphology 96:105–122

    Article  Google Scholar 

  • Guzzetti F, Ardizzone F, Cardinali M, Galli M, Rossi M, Valigi D (2009) Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth Planet Sci Lett 279:222–229

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66

    Article  Google Scholar 

  • Holec J, Bednarik M, Sabo M, Minar J, Yilmaz I, Marschalko M (2013) A small-scale landslide susceptibility assessment for the territory of Western Carpathians. Nat Hazards 69(1):1081–1107

    Article  Google Scholar 

  • Hovius N, Stark CP, Allen PA (1997) Sediment flux from a mountain belt derived by landslide mapping. Geology 25:231–234

    Article  Google Scholar 

  • Hovius N, Stark CP, Hao-Tsu C, Jinn-Chuan L (2000) Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan. J Geol 108:73–89

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194

    Article  Google Scholar 

  • Irigaray C (1995) Movimientos de ladera: inventoria, analisis y cartografaa de susceptibilidad mediante un Sistema de Informacion Geografica. Aplicacion a las zonas de Colmenar (Ma), Rute (Co) y Montefrio (Gr). Thesis Doctoral, University Granada

    Google Scholar 

  • Ives JD, Messerli B (1981) Mountain hazard mapping in Nepal: introduction to an applied mountain research project. Mt Res Dev 1(3–4):223–230

    Article  Google Scholar 

  • Jade S, Sarkar S (1993) Statistical models for slope instability classification. Eng Geol 36:91–98

    Article  Google Scholar 

  • Keaton JR, DeGraff JV (1996) Surface observation and geologic mapping. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation: National Research Council Transportation Research Board Special Report, vol 247, pp 178–230

    Google Scholar 

  • Lee S, Min K (2001) Statistical analyses of landslide susceptibility at Yongin, Korea. Environ Geol 40:1095–1113

    Article  Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004a) Landslides, earthquakes and erosion. Earth Planet Sci Lett 229:45–59

    Article  Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004b) Landslide inventories and their statistical properties. Earth Surf Proc Land 29(6):687–711

    Article  Google Scholar 

  • McCalpin J (1984) Preliminary age classification of landslides for inventory mapping. In: Proceedings of the 21st engineering geology and soils engineering symposium, University, Moscow, ID, pp 99–120

    Google Scholar 

  • Nefeslioglu HA, Gokceoglu C, Sonmez H (2008) An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol 97:171–191

    Article  Google Scholar 

  • Parker RN, Densmore AL, Rosser NJ, de Michele M, Li Y, Huang R, Whadcoat S, Petley DN (2011) Mass wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic growth. Nat Geosci 4(7):449–452

    Article  Google Scholar 

  • Peck R, Olsen C, Devore JL (2008) Introduction to statistics and data analysis, 3rd edn. Cengage Learning. ISBN 0-495-55783-8

    Google Scholar 

  • Pratt JW, Raiffa H, Schaifer R (1995) Introduction to statistical decision theory. MIT Press, Cambridge, MA. MR1326829

    Google Scholar 

  • Radbruch-Hall DH, Colton RB, Davies WE, Lucchitta I, Skipp BA, Varnes DJ (1982) Landslide overview map of the conterminous United States. U.S. Geological Survey Professional Paper, 1183. WWW page http://pubs.usgs.gov/pp/p1183/pp1183.html. 25 p

  • Remondo J, Gonzalez-Diez A, Teran JRD, Cendrero A (2003) Landslide susceptibility models utilising spatial data analysis techniques. A case study from the lower Deba Valley, Guipúzcoa (Spain). Nat Hazards 30:267–279

    Article  Google Scholar 

  • Rengers N, Van Westen CJ, Chacón J, Irigaray C (1998) Draft for the chapter on the application of digital techniques for natural hazard zonation, Report on Mapping of Natural Hazards, International Association of Engineering Geology. Commission No. 1 on Engineering Geological Mapping

    Google Scholar 

  • Rupke J, Cammeraat E, Seijmonsbergen AC, Van Westen CJ (1988) Engineering geomorphology of the widentobel catchment, Switzerland: a geomorphological inventory system applied to geotechnical appraisal of the slope stability. Eng Geol 26:33–68

    Article  Google Scholar 

  • Santacana N, Baeza B, Corominas J, Paz A, Marturia J (2003) A GIS based multivariate statistical analysis for shallow landslide susceptibility mapping in la Pobla de Lillet area (Eastern Pyrenees, Spain). Nat Hazards 30:281–295

    Article  Google Scholar 

  • Soeters R, Van Westen CJ (1996) Slope instability, recognition, analysis, and zonation. In: Turner AK, Schuster RL (eds) Landslides—investigation and mitigation, transportation research board special report 247. National Academy Press, Washington, DC, pp 129–177

    Google Scholar 

  • Suzen ML, Doyuran V (2004) Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Eng Geol 71:303–321

    Article  Google Scholar 

  • Trigila A, Iadanza C, Spizzichino D (2010) Quality assessment of the Italian landslide inventory using GIS processing. Landslides 7:455–470

    Article  Google Scholar 

  • Van Westen CJ, Soeters R, Sijmons K (2000) Digital geomorphological landslide hazard mapping of the Alpago area, Italy. Int J Appl Earth Obs Geoinf 2(1):51–59

    Article  Google Scholar 

  • Van Westen CJ, van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65:167–184

    Article  Google Scholar 

  • Van Westen CJ, Castellanos Abella EA, Sekhar LK (2008) Spatial data for landslide susceptibility, hazards and vulnerability assessment: an overview. Eng Geol 102:112–131

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides, analysis and control, special report 176: transportation research board. National Academy of Sciences, Washington, DC, pp 11–33

    Google Scholar 

  • Ward T, Ruh-Ming L, Simons D (1982) Mapping landslide hazard in forest watershed. J Geotech Eng Div 108(GT2):319–324

    Google Scholar 

  • Wieczorek GF (1984) Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Assoc Eng Geol Bull 21(3):337–342

    Google Scholar 

  • Yilmaz I (2009a) a. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat–Turkey). Comput Geosci 35(6):1125–1138

    Article  Google Scholar 

  • Yilmaz I (2009b) b. A case study from Koyulhisar (Sivas–Turkey) for landslide susceptibility mapping by artificial neural networks. Bull Eng Geol Environ 68(3):297–306

    Article  Google Scholar 

  • Yilmaz I (2010a) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci 61(4):821–836

    Article  Google Scholar 

  • Yilmaz I (2010b) The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability (CP) and artificial neural networks (ANN). Environ Earth Sci 60(3):505–519

    Article  Google Scholar 

  • Yilmaz I, Keskin I (2009) GIS based statistical and physical approaches to landslide susceptibility mapping (Sebinkarahisar, Turkey). Bull Eng Geol Env 68(4):459–471

    Article  Google Scholar 

  • Yilmaz I, Yildirim M (2006) Structural and geomorphological aspects of the Kat landslides (Tokat—Turkey), and susceptibility mapping by means of GIS. Environ Geol 50(4):461–472

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isik Yilmaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yilmaz, I., Ercanoglu, M. (2019). Landslide Inventory, Sampling and Effect of Sampling Strategies on Landslide Susceptibility/Hazard Modelling at a Glance. In: Pourghasemi, H., Rossi, M. (eds) Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques. Advances in Natural and Technological Hazards Research, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-73383-8_9

Download citation

Publish with us

Policies and ethics