Skip to main content

Evaluation of Sentinel-2 MSI and Pleiades 1B Imagery in Forest Fire Susceptibility Assessment in Temperate Regions of Central and Eastern Europe. A Case Study of Romania

  • Chapter
  • First Online:

Part of the book series: Advances in Natural and Technological Hazards Research ((NTHR,volume 48))

Abstract

Romania is a Carpathian country that experiences an increasing number of wildfire events. The production of a reliable model for the zonation of the monthly forest fire susceptibility degrees with a National scale coverage was the target of the SIAFIM project. Our approach is oriented towards the integration of complementary satellite imagery in the evaluation of forest fire susceptibility with the help of data mining techniques. A complex of ground reflectance calibrated spectral data and vegetation radiometric-biophysical indices is produced at two different scales and spectral resolutions from Sentinel-2 MSI multispectral imagery and Pleiades 1B ortho imagery from the month of August, in the region of Domogled-Valea Cernei, south western Romania. The main objective is the production and the evaluation of the representative indices from the available satellite imagery for the mapping of the forested surfaces sensitive to wildfire hazards. The analysis confirmed the reliability of some indices for the assessment of forest fire susceptibility in temperate regions of Central and Eastern Europe: LAI, SAVI, RedNDVI, Cab. Leaf Area Index (LAI) offer interesting information for the selected forest stands, between 0.06 and 0.2: pine stands on limestone steep slopes, Banat black pine stands and beech on shallow soil.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agapiou A, Alexakis DD, Sarris A, Hadjimitsis DG (2014) Evaluating the potentials of Sentinel-2 for archaeological perspective. Remote Sens-Basel 6(3):2176–2194

    Article  Google Scholar 

  • Anderson LO (2012) Biome-scale forest properties in Amazonia based on field and satellite observations. Remote Sens-Basel 4(5):1245–1271

    Article  Google Scholar 

  • Angayarkkani K, Radhakrishnan N (2009) Efficient forest fire detection system: a spatial data mining and image processing based approach. Int J Comput Sci Netw Secur 9(3):100–107

    Google Scholar 

  • Arpaci A, Malowerschnig B, Sass O, Vacik H (2014) Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean forests. Appl Geogr 53:258–270

    Article  Google Scholar 

  • Baret F, Fourty T (1997) Radiometric estimates of nitrogen status of leaves and canopies. In: Diagnosis of the nitrogen status in crops. Springer, Berlin, pp 201–227

    Chapter  Google Scholar 

  • Bowman DM, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP (2009) Fire in the earth system. Science 324(5926):481–484

    Article  Google Scholar 

  • Caspard M, Yésou H, Selle A, Tinel C, Tessier P, Durand A, Clandillon S, de Fraipont P (2015) Forest recolonization monitoring based on HR and VHR imagery: the case of the Maido forest fire exploiting Pléiades and spot Kalideos database. Rev Fr Photogram Télédétection 209:149

    Google Scholar 

  • Cheng T, Wang J (2008) Integrated Spatio-temporal data mining for forest fire prediction. Trans GIS 12(5):591–611

    Article  Google Scholar 

  • Chuvieco E (2000) Remote sensing of forest fires—current limitations and future prospects. Observing Land Space: Sci Customers Technol 4:47–51

    Google Scholar 

  • Chuvieco E, Aguado I, Jurdao S, Pettinari ML, Yebra M, Salas J, Hantson S, de la Riva J, Ibarra P, Rodrigues M (2014) Integrating geospatial information into fire risk assessment. Int J Wildland Fire 23(5):606–619

    Article  Google Scholar 

  • Chuvieco E, Aguado I, Yebra M, Nieto H, Salas J, Martín MP, Vilar L, Martínez J, Martín S, Ibarra P (2010) Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol Model 221(1):46–58

    Article  Google Scholar 

  • Chuvieco E, Cocero D, Riano D, Martin P, Martınez-Vega J, de la Riva J, Perez F (2004) Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sens Environ 92(3):322–331

    Article  Google Scholar 

  • Clima României (2008) Clima României. Editura Academiei Române, București

    Google Scholar 

  • Cortez P, Morais AdJR (2007) A data mining approach to predict forest fires using meteorological data

    Google Scholar 

  • Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ (2001) Climate change and forest disturbances: climate change can affect forests by altering the frequency, intensity, duration, and timing of fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. Bioscience 51(9):723–734

    Article  Google Scholar 

  • Datcu M, Daschiel H, Pelizzari A, Quartulli M, Galoppo A, Colapicchioni A, Pastori M, Seidel K, Marchetti PG, d’Elia S (2003) Information mining in remote sensing image archives: system concepts. IEEE Trans Geosci Remote Sens 41(12):2923–2936

    Article  Google Scholar 

  • Datcu M, Seidel K (2000) Image information mining: exploration of image content in large archives. In: Aerospace Conference Proceedings, 2000 IEEE, pp 253–264

    Google Scholar 

  • Delegido J, Verrelst J, Alonso L, Moreno J (2011) Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and Chlorophyll Content. Sens Basel 11(7):7063–7081

    Article  Google Scholar 

  • Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P, Meygret A, Spoto F, Sy O, Marchese F, Bargellini P (2012) Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens Environ 120:25–36

    Article  Google Scholar 

  • Fernandez A, Illera P, Casanova JL (1997) Automatic mapping of surfaces affected by forest fires in Spain using AVHRR NDVI composite image data. Remote Sens Environ 60(2):153–162

    Article  Google Scholar 

  • Flannigan MD, Stocks BJ, Wotton BM (2000) Climate change and forest fires. Sci Total Environ 262(3):221–229

    Article  Google Scholar 

  • Frampton WJ, Dash J, Watmough G, Milton EJ (2013) Evaluating the capabilities of sentinel-2 for quantitative estimation of biophysical variables in vegetation. Isprs J Photogramm 82:83–92

    Article  Google Scholar 

  • Gao B-C (1996) NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58(3):257–266

    Article  Google Scholar 

  • Gitelson A, Merzlyak MN (1994) Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J Plant Physiol 143(3):286–292

    Article  Google Scholar 

  • Gitelson AA, Kaufman YJ, Merzlyak MN (1996) Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens Environ 58(3):289–298

    Article  Google Scholar 

  • Gitelson AA, Merzlyak MN (1998) Remote sensing of chlorophyll concentration in higher plant leaves. Adv Space Res 22(5):689–692

    Article  Google Scholar 

  • Han JG, Ryu KH, Chi KH, Yeon YK (2003) Statistics based predictive geo-spatial data mining: Forest fire hazardous area mapping application. Web Technol Appl 2642:370–381

    Article  Google Scholar 

  • Hsu W, Lee ML, Zhang J (2002) Image mining: trends and developments. J Intell Inf Syst 19(1):7–23

    Article  Google Scholar 

  • Huang Y-L, Devan MN, U’Ren JM, Furr SH, Arnold AE (2016) Pervasive effects of wildfire on foliar endophyte communities in montane forest trees. Microb Ecol 71(2):452–468

    Article  Google Scholar 

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309

    Article  Google Scholar 

  • Jacquemoud S, Baret F (1990) PROSPECT: a model of leaf optical properties spectra. Remote Sens Environ 34(2):75–91

    Article  Google Scholar 

  • Joint Research Center I, Land Management and Natural Hazard Unit (2014) Forest Fire in Europe, Middle East and North Africa 2013. European Commission. https://doi.org/10.2788/99870

  • Maffei C, Menenti M (2014) A MODIS-based perpendicular moisture index to retrieve leaf moisture content of forest canopies. Int J Remote Sens 35(5):1829–1845. https://doi.org/10.1080/01431161.2013.879348

    Article  Google Scholar 

  • Main-Knorn M, Pflug B, Debaecker V, Louis J (2015) Calibration and validation plan for the L2A processor and products of the sentinel-2 mission. Int Arch Photogrammetry Remote Sens Spat Inf Sci 40(7):1249

    Article  Google Scholar 

  • Majasalmi T, Rautiainen M (2016) The potential of Sentinel-2 data for estimating biophysical variables in a boreal forest: a simulation study. Remote Sens Lett 7(5):427–436

    Article  Google Scholar 

  • Matricardi EAT, Skole DL, Pedlowski MA, Chomentowski W, Fernandes LC (2010) Assessment of tropical forest degradation by selective logging and fire using Landsat imagery. Remote Sens Environ 114(5):1117–1129. https://doi.org/10.1016/j.rse.2010.01.001

    Article  Google Scholar 

  • Maxant J, Proy C, Fontannaz D, Clandillon S, Allenbach B, Yesou H, Battiston S, Uribe C, De Fraipont P (2013) Contribution of Pleiades-HR imagery for disaster damage mapping: initial feedback over Asia, Africa, Europe or the Caribbean. In: Proceedings of 33th EARSeL Symposium Towards Horizon

    Google Scholar 

  • Mazzoni D, Logan JA, Diner D, Kahn R, Tong LL, Li QB (2007) A data-mining approach to associating MISR smoke plume heights with MODIS fire measurements. Remote Sens Environ 107(1–2):138–148

    Article  Google Scholar 

  • Mihai B, Săvulescu I (2014) Mapping forest fire susceptibility in temperate mountain areas with submediteranean influences with expert knowledge. A case study from Domogled ridge—Mehedinți Mountains, Southern Carpathians. Paper presented at the S4C (Science for the Carpathians). Forum Carpaticum 2014: Local Responses to Global Challenges, Lviv, Ukraine

    Google Scholar 

  • Mithal V, Garg A, Boriah S, Steinbach M, Kumar V, Potter C, Klooster S, Castilla-Rubio JC (2011) Monitoring global forest cover using data mining. ACM Trans Intell Syst Tec 2(4)

    Article  Google Scholar 

  • Pătroescu M, Chincea I, Rozylowicz L, Sorescu C, Goia I, Groza G, Frățilă E, Iojă C, Bădescu B, Crișan A, Crăciun N (2007) Forests with Banat black pine (Pinus nigra subsp. banatica) NATURA 2000 site. Editura BRUMAR Timișoara

    Google Scholar 

  • Pourghasemi HR (2016) GIS-based forest fire susceptibility mapping in Iran: a comparison between evidential belief function and binary logistic regression models. Scand J Forest Res 31(1):80–98

    Article  Google Scholar 

  • Pourtaghi ZS, Pourghasemi HR, Aretano R, Semeraro T (2016) Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques. Ecol Indic 64:72–84

    Article  Google Scholar 

  • Quintano C, Fernandez-Manso A, Stein A, Bijker W (2011) Estimation of area burned by forest fires in Mediterranean countries: a remote sensing data mining perspective. Forest Ecol Manag 262(8):1597–1607

    Article  Google Scholar 

  • Richter K, Hank TB, Vuolo F, Mauser W, D’Urso G (2012) Optimal exploitation of the Sentinel-2 spectral capabilities for crop leaf area index mapping. Remote Sens-Basel 4(3):561–582

    Article  Google Scholar 

  • Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great Plains with ERTS. Paper presented at the Third ERTS Symposium

    Google Scholar 

  • Serbin SP, Ahl DE, Gower ST (2013) Spatial and temporal validation of the MODIS LAI and FPAR products across a boreal forest wildfire chronosequence. Remote Sens Environ 133:71–84. https://doi.org/10.1016/j.rse.2013.01.022

    Article  Google Scholar 

  • Stojanova D, Panov P, Kobler A, Džeroski S, Taškova K (2006) Learning to predict forest fires with different data mining techniques. In: Conference on data mining and data warehouses (SiKDD 2006), Ljubljana, Slovenia, pp 255–258

    Google Scholar 

  • Tay SC, Hsu W, Lim KH, Yap LC (2003) Spatial data mining: clustering of hot spots and pattern recognition. In: Geoscience and Remote Sensing Symposium, 2003. IGARSS’03. Proceedings. 2003 IEEE International. IEEE, pp 3685–3687

    Google Scholar 

  • Török-Oance M, Török-Oance R (2002) Considerații asupra propagării și efectelor incendiilor în regiunile montane. Studiu de caz: incendiul din Masivul Domogled (August 2000). Studii și cercetări de Geologie 47:221–232

    Google Scholar 

  • Umamaheshwaran R, Bijker W, Stein A (2007) Image mining for modeling of forest fires from Meteosat images. IEEE Trans Geosci Remote Sens 45(1):246–253

    Article  Google Scholar 

  • Wang D, Wang J, Liang S (2010) Retrieving crop leaf area index by assimilation of MODIS data into a crop growth model. Sci China Earth Sci 53(5):721–730

    Article  Google Scholar 

  • Whittaker RH, Niering WA (1975) Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, production, and diversity along the elevation gradient. Ecology 56(4):771–790

    Article  Google Scholar 

Download references

Acknowledgements

The research was done in the framework of SIAFIM project (Satellite Image Analysis for Fire Monitoring), 2012–2015, financed by ROSA-Romanian Space Agency and ESA-European Space Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan-Andrei Mihai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mihai, BA., Săvulescu, I., Vîrghileanu, M., Olariu, B. (2019). Evaluation of Sentinel-2 MSI and Pleiades 1B Imagery in Forest Fire Susceptibility Assessment in Temperate Regions of Central and Eastern Europe. A Case Study of Romania. In: Pourghasemi, H., Rossi, M. (eds) Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques. Advances in Natural and Technological Hazards Research, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-73383-8_11

Download citation

Publish with us

Policies and ethics