Skip to main content

Heat Shock Proteins in Fish Health and Diseases: A Pharmacological Perspective

  • Chapter
  • First Online:
Heat Shock Proteins in Veterinary Medicine and Sciences

Part of the book series: Heat Shock Proteins ((HESP,volume 12))

  • 678 Accesses

Abstract

Disease outbreaks are considered one of the largest constraints for the sustainable development of the aquaculture sector. Though applications of antibiotics manage to control and prevent infectious microbial diseases, however, its extensive uses have also unavoidably resulted in the emergence of ‘superbugs’ that resist conventional antibiotics. This calls for the development of new approaches for combating infections. Recently, heat shock proteins have been suggested to mediate the generation of strong innate and adaptive immune responses against many diseases in plants and terrestrial animals, leading to the formulation of strategies to fight infections. In this review, the potential of a new treatment, heat shock protein-based therapy, for overcoming the menace of diseases in farmed aquatic animals of commercial importance are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APCs:

Antigen presenting cells

DAMPs:

Damage-associated molecular patterns

DC:

Dendritic cells

HSC:

Heat shock cognate protein

HSP:

Heat shock protein

IFN:

Interferons

IgA:

Mmunoglobulin A

IgG:

Mmunoglobulin G

IL:

Interleukin

MHC:

Major histocompatibility complex

TLRs:

Toll like receptors

TNF:

Tumor necrosis factor

References

  • Asea, A. (2005). Stress proteins and initiation of the immune system. Brain Behavior and Immunity, 19, 464–464.

    Google Scholar 

  • Asea, A., Rehli, M., Kabingu, E., Boch, J. A., Bare, O., Auron, P. E., Stevenson, M. A., & Calderwood, S. K. (2002). Novel signal transduction pathway utilized by extracellular HSP70 – Role of Toll-like receptor (TLR) 2 AND TLR4. Journal of Biological Chemistry, 277, 15028–15034.

    Article  CAS  PubMed  Google Scholar 

  • Barrios, C., Lussow, A. R., Vanembden, J., Vanderzee, R., Rappuoli, R., Costantino, P., Louis, J. A., Lambert, P. H. & Delgiudice, G. (1992). Mycobacterial Heat-Shock Proteins as Carrier Molecules.2. The use of the 70-Kda Mycobacterial Heat-Shock Protein as carrier for conjugated vaccines can circumvent the need for adjuvants and Bacillus-Calmette-Guerin priming. European Journal of Immunology 22, 1365–1372.

    Google Scholar 

  • Baruah, K., Ranjan, J. K., Sorgeloos, P., & Bossier, P. (2010). Efficacy of homologous and heterologous heat shock protein 70s as protective agents to gnotobiotic Artemia franciscana challenged with Vibrio campbellii. Fish and Shellfish Immunology, 29, 733–739.

    Article  CAS  PubMed  Google Scholar 

  • Basu, S., Binder, R. J., Suto, R., Anderson, K., & Srivastava, P. K. (2000). Necrotic but not apoptiotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. International Immunology, 12, 1539–1546.

    Article  CAS  PubMed  Google Scholar 

  • Binder, R. J., Vatner, R., & Srivastava, P. (2004). The heat-shock protein receptors: Some answers and more questions. Tissue Antigens, 64, 442–451.

    Article  CAS  PubMed  Google Scholar 

  • Blachere, N. E., Li, Z., Chandawarkar, R. Y., Suto, R., Jaikaria, N. S., Basu, S., Udono, H., & Srivastava, P. K. (1997). Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. Journal of Experimental Medicine, 186, 1315–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonato, V. L. D., Lima, V. M. F., Tascon, R. E., Lowrie, D. B., & Silva, C. L. (1998). Identification and characterization of protective T cells in hsp65 DNA-vaccinated and Mycobacterium tuberculosis-infected mice. Infection and Immunity, 66, 169–175.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, M. A., Upender, R. P., Hightower, L. E., & Renfro, J. L. (1992). Thermoprotection of a functional epithelium – Heat-Stress effects on transepithelial transport by flounder renal tubule in primary Monolayer-culture. Proceedings of the National Academy of Sciences of the United States of America, 89, 3246–3250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campisi, J., Leem, T. H., & Fleshner, M. (2003). Stress-induced extracellular Hsp72 is a functionally significant danger signal to the immune system. Cell Stress & Chaperones, 8, 272–286.

    Article  CAS  Google Scholar 

  • Ciupitu, A. M. T., Petersson, M., O’Donnell, C. L., Williams, K., Jindal, S., Kiessling, R., & Welsh, R. M. (1998). Immunization with a lymphocytic choriomeningitis virus peptide mixed with heat shock protein 70 results in protective antiviral immunity and specific cytotoxic T lymphocytes. Journal of Experimental Medicine, 187, 685–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Defoirdt, T., Boon, N., Bossier, P., & Verstraete, W. (2004). Disruption of bacterial quorum sensing: An unexplored strategy to fight infections in aquaculture. Aquaculture, 240, 69–88.

    Article  Google Scholar 

  • Dubeau, S. F., Pan, F., Tremblay, G. C., & Bradley, T. M. (1998). Thermal shock of salmon in vivo induces the heat shock protein hsp 70 and confers protection against osmotic shock. Aquaculture, 168, 311–323.

    Article  CAS  Google Scholar 

  • El Fituri A.A. (2009). The possible role of TEX-OE in the Pathogenesis of Vibriosis. MSc thesis, University of Malta, 97.

    Google Scholar 

  • Emmrich, F., Thole, J., Vanembden, J., & Kaufmann, S. H. E. (1986). A recombinant 64 Kilodalton protein of Mycobacterium bovis Bacillus Calmette-Guerin specifically stimulates human T4 Clones reactive to Mycobacterial Antigens. Journal of Experimental Medicine, 163, 1024–1029.

    Article  CAS  PubMed  Google Scholar 

  • Galdiero, M., Delero, G. C., & Marcatili, A. (1997). Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins. Infection and Immunity, 65, 699–707.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, B. C., & Tsan, M. F. (2004). Induction of cytokines by heat shock proteins and endotoxin in murine macrophages. Biochemical and Biophysical Research Communications, 317, 1149–1154.

    Article  CAS  PubMed  Google Scholar 

  • Heikema, A., Agsteribbe, E., Wiscjut, J., & Huckriede, A. (1997). Generation of heat shock protein-based vaccines by intracellular loading of gp96 with antigenic peptides. Immunology Letters, 57, 69–74.

    Article  CAS  PubMed  Google Scholar 

  • Janeway, C. A. (1992). The immune-system evolved to discriminate infectious nonself from Noninfectious self. Immunology Today, 13, 11–16.

    Article  CAS  PubMed  Google Scholar 

  • Kang, H. K., Lee, H. Y., Lee, Y. N., Jo, E. J., Kim, J. I., Aosai, F., Yano, A., Kwak, J. Y., & Bae, Y. S. (2004). Toxoplasma gondii-derived heat shock protein 70 stimulates the maturation of human monocyte-derived dendritic cells. Biochemical and Biophysical Research Communications, 322, 899–904.

    Article  CAS  PubMed  Google Scholar 

  • Kol, A., Bourcier, T., Lichtman, A. H., & Libby, P. (1999). Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages. Journal of Clinical Investigation, 103, 571–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kono, H., & Rock, K. L. (2008). How dying cells alert the immune system to danger. Nature Reviews Immunology, 8, 279–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehner, T., Bergmeier, L. A., Wang, Y. F., Tao, L., Sing, M., Spallek, R., & van der Zee, R. (2000). Heat shock proteins generate beta-chemokines which function as innate adjuvants enhancing adaptive immunity. European Journal of Immunology, 30, 594–603.

    Article  CAS  PubMed  Google Scholar 

  • Locke, M. (1997). The cellular response to exercise: Role of stress proteins. Exercise Sports Science Reviews, 25, 105–136.

    Article  CAS  Google Scholar 

  • Lowrie, D. B., Tascon, R. E., & Silva, C. L. (1995). Vaccination against tuberculosis. International Archives of Allergy and Immunology, 108, 309–312.

    Article  CAS  PubMed  Google Scholar 

  • Luster, A. D. (1998). Chemokines – Chemotactic cytokines that mediate inflammation. New England Journal of Medicine, 338, 436–445.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, S. H., Conejeros, P., Zahr, M., Olivares, J., Gomez, F., Cataldo, P., & Henriquez, V. (2007). Immunological characterization of a bacterial protein isolated from salmonid fish naturally infected with Piscirickettsia salmonis. Vaccine, 25, 2095–2102.

    Article  CAS  PubMed  Google Scholar 

  • Matsutake, T., & Srivastava, P. K. (2000). CD91 is involved in MHC class II presentation of gp96-chaperoned peptides. Cell Stress & Chaperones, 5, 378–378.

    Google Scholar 

  • Mehra, V., Bloom, B. R., Bajardi, A. C., Grisso, C. L., Sieling, P. A., Alland, D., Convit, J., Fan, X. D., Hunter, S. W., Brennan, P. J., Rea, T. H., & Modlin, R. L. (1992). A Major T-Cell Antigen of Mycobacterium-Leprae Is A 10-Kd heat-shock Cognate protein. Journal of Experimental Medicine, 175, 275–284.

    Article  CAS  PubMed  Google Scholar 

  • Moseley, P. L. (1998). Heat shock proteins and the inflammatory response. Molecular Mechanisms of Fever, 856, 206–213.

    CAS  Google Scholar 

  • Noll, A., & Autenrieth, I. B. (1996). Immunity against Yersinia enterocolitica by vaccination with Yersinia HSP60 immunostimulating complexes or Yersinia HSP60 plus interleukin-12. Infection and Immunity, 64, 2955–2961.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oladiran, A., & Belosevic, M. (2009). Trypanosoma carassii hsp70 increases expression of inflammatory cytokines and chemokines in macrophages of the goldfish (Carassius auratus L.) Developmental and Comparative Immunology, 33, 1128–1136.

    Article  CAS  PubMed  Google Scholar 

  • Osterloh, A., & Breloer, M. (2008). Heat shock proteins: Linking danger and pathogen recognition. Medical Microbiology and Immunology, 197, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Parsell, D. A., & Linquist, S. (1993). The function of heat shock proteins in stress tolerance: Degradation and reactivation of damaged proteins. Annual Review of Genetics, 27, 437–496.

    Article  CAS  PubMed  Google Scholar 

  • Plant, K. P., LaPatra, S. E., & Cain, K. D. (2009). Vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), with recombinant and DNA vaccines produced to Flavobacterium psychrophilum heat shock proteins 60 and 70. Journal of Fish Diseases, 32, 521–534.

    Article  CAS  PubMed  Google Scholar 

  • Pockley, A. G. (2003). Heat shock proteins as regulators of the immune response. Lancet, 362, 469–476.

    Article  CAS  PubMed  Google Scholar 

  • Ritossa, F. (1962). A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia, 13, 571–573.

    Article  Google Scholar 

  • Roberts, R. J., Agius, C., Saliba, C., Bossier, P., & Sung, Y. Y. (2010). Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: A review. Journal of Fish Diseases, 33, 789–801.

    Article  CAS  PubMed  Google Scholar 

  • Ryckaert, J., Pasmans, F., Tobback, E., Duchateau, L., Decostere, A., Haesebrouck, F., Sorgeloos, P., & Bossier, P. (2010). Heat shock proteins protect platyfish (Xiphophorus maculatus) from Yersinia ruckeri induced mortality. Fish and Shellfish Immunology, 28, 228–231.

    Google Scholar 

  • Singh-Jasuja, H., Hilf, N., Scherer, H. U., Spee, P., Munz, C., Schoenberger, S. P., Ricclardi-Castagnoli, P., Neefjes, J., Rammensee, H. G., Toes, R. E. M., Arnold-Schild, D., & Schild, H. (2000). Gp96 delivers receptor-mediated signals for the innate and adaptive immune system. Cell Stress & Chaperones, 5, 380–380.

    Article  Google Scholar 

  • Srivastava, P. (2002). Interaction of heat shock proteins with peptides and antigen presenting cells: Chaperoning of the innate and adaptive immune responses. Annual Review of Immunology, 20, 395–425.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, P., & Amato, R. J. (2001). Heat shock proteins: The ‘Swiss Army Knife’ vaccines against cancers and infectious agents. Vaccine, 19, 2590–2597.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, P. K., Callahan, M. K., & Mauri, M. M. (2009). Treating human cancers with heat shock protein-peptide complexes: The read ahead. Expert Opinion on Biological Therapy, 9, 179–186.

    Article  CAS  PubMed  Google Scholar 

  • Sudheeshl, P. S., LaFrentz, B. R., Call, D. R., Siems, W. F., LaPatra, S. E., Wiens, G. D., & Cain, K. D. (2007). Identification of potential vaccine target antigens by immunoproteomic analysis of a virulent and a non-virulent strain of the fish pathogen Flavobacterium psychrophilum. Diseases of Aquatic Organisms, 74, 37–47.

    Article  Google Scholar 

  • Sung, Y. Y., Van Damme, E. J. M., Sorgeloos, P., & Bossier, P. (2007). Non-lethal heat shock protects gnotobiotic Artemia francisciana larvae against virulent vibrios. Fish and Shellfish Immunology, 22, 318–326.

    Article  CAS  Google Scholar 

  • Sung, Y. Y., Pineda, C., MacRae, T. H., Sorgeloos, P., & Bossier, P. (2008). Exposure of gnotobiotic Artemia fransiscana larvae to abiotic stress promotes heat shock protein 70 synthesis and enhances resistance to pathogenic Vibrio campbellii. Cell Stress and Chaperones, 13, 59–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung, Y. Y., Ashame, M. F., MacRae, T. H., Sorgeloos, P., & Bossier, P. (2009a). Feeding Artemia franciscana (Kellogg) larvae with bacterial heat shock protein, protects from Vibrio campbellii infection. Journal of Fish Diseases, 32, 675–685.

    Article  CAS  PubMed  Google Scholar 

  • Sung, Y. Y., Dhaene, T., Defoirdt, T., Boon, N., MacRae, T. H., Sorgeloos, P., & Bossier, P. (2009b). Ingestion of bacteria overproducing DnaK attenuates Vibrio infection of gnotobiotic Artemia franciscana larvae. Cell Stress and Chaperones, 14, 603–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzue, K., & Young, R. A. (1996). Adjuvant-free hsp70 fusion protein system elicits humoral and cellular immune responses to HIV-1 p24. Journal of Immunology, 156, 873–879.

    CAS  Google Scholar 

  • Tabona, P., Reddi, K., Khan, S., Nair, S. P., Crean, S. J. V., Meghji, S., Wilson, M., Preuss, M., Miller, A. D., Poole, S., Carne, S., & Henderson, B. (1998). Homogeneous Escherichia coli chaperonin 60 induces IL-1 beta and IL-6 gene expression in human monocytes by a mechanism independent of protein conformation. Journal of Immunology, 161, 1414–1421.

    CAS  Google Scholar 

  • Thole, J. E. R., Vanschooten, W. C. A., Keulen, W. J., Hermans, P. W. M., Janson, A. A. M., Devries, R. R. P., Kolk, A. H. J., & Vanembden, J. D. A. (1988). Use of recombinant Antigens expressed in Escherichia coli K-12 to map B-Cell and T-Cell Epitopes on the immunodominant 65-Kilodalton protein of Mycobacterium bovis Bcg. Infection and Immunity, 56, 1633–1640.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Todryk, S. M., Goughy, M. J., & Pockley, A. G. (2003). Facets of heat shock protein 70 show immunotherapeutic potential. Immunology, 110, 1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Townsend, A., & Bodmer, H. (1989). Antigen recognition by Class-I restricted Lymphocyte-T. Annual Review of Immunology, 7, 601–624.

    Article  CAS  PubMed  Google Scholar 

  • Udono, H., & Srivastava, P. K. (1993). Heat-Shock Protein-70 associated Peptides Elicit specific cancer immunity. Journal of Experimental Medicine, 178, 1391–1396.

    Article  CAS  PubMed  Google Scholar 

  • Udono, H., & Srivastava, P. K. (1994). Comparison of Tumor-Specific immunogenicities of Stress-induced Proteins Gp96, Hsp90, and Hsp70. Journal of Immunology, 152, 5398–5403.

    CAS  Google Scholar 

  • Vabulas, R. M., Ahmad-Nejad, P., Da Costa, C., Miethke, T., Kirschning, C. J., Hacker, H., & Wagner, H. (2001). Endocytosed HSP60s use Toll-like receptor 2 (TLR2) and TLR4 to activate the Toll/Interleukin-1 receptor signaling pathway in innate immune cells. The Journal of Biological Chemistry, 276, 31332–31339.

    Article  CAS  PubMed  Google Scholar 

  • Valentinis, B., Capobianco, A., Esposito, F., Bianchi, A., Rovere-Querini, P., Manfredi, A. A., & Traversari, C. (2008). Human recombinant heat shock protein 70 affects the maturation pathways of dendritic cells in vitro and has an in vivo adjuvant activity. Journal of Leukocyte Biology, 84, 199–206.

    Article  CAS  PubMed  Google Scholar 

  • Volker, U., Mach, H., Schmid, R., & Hecker, H. (1992). Stress Proteins and cross-protection by Heat-Shock and salt stress in Bacillus subtilis. Journal of General Microbiology, 138, 2125–2135.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X. Y., Kazim, L., Repasky, E. A., & Subjeck, J. R. (2001). Characterization of heat shock protein 110 and glucose-regulated protein 170 as cancer vaccines and the effect of fever-range hyperthermia on vaccine activity. Journal of Immunology, 166, 490–497.

    Google Scholar 

  • Wang, Y. F., Kelly, C. G., Singh, M., McGowan, E. G., Carrara, A. S., Bergmeier, L. A., & Lehner, T. (2002). Stimulation of Th1-polarizing maturation of dendritic cells, cytokines, C-C chemokines, and adjuvant function by the peptide binding fragment of heat shock protein 70. Journal of Immunology, 169, 2422–2429.

    Article  CAS  Google Scholar 

  • Welch, W. J. (1993). How cells respond to stress. Scientific American, 268, 56–64.

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm, V., Soza, C., Martinez, R., Rosemblatt, M., Burzio, L. O., & Valenzuela, P. D. T. (2005). Production and immune response of recombinant Hsp60 and Hsp70 from the salmon pathogen Piscirickettsia salmonis. Biological Research, 38, 69–82.

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm, V., Miquel, A., Burzio, L. O., Rosemblatt, M., Engel, E., Valenzuela, S., Parada, G., & Valenzuela, P. D. T. (2006). A vaccine against the salmonid pathogen Piscirickettsia salmonis based on recombinant proteins. Vaccine, 24, 5083–5091.

    Article  CAS  PubMed  Google Scholar 

  • Young, D. A., Lowe, L. D., & Clark, S. C. (1990). Comparison of the effects of Il-3, Granulocyte-Macrophage Colony-Stimulating Factor, and Macrophage Colony-Stimulating Factor in supporting Monocyte differentiation in culture – Analysis of Macrophage Antibody-Dependent cellular Cytotoxicity. Journal of Immunology, 145, 607–615.

    CAS  Google Scholar 

  • Zügel, U., & Kaufmann, S. H. E. (1999). Role of heat shock proteins in protection from and pathogenesis of infectious diseases. Clinical Microbiology Reviews, 12, 19–39.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Research Foundation Flanders, FWO-Vlaanderen, Belgium (FWO13/PDO/005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kartik Baruah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baruah, K., Norouzitallab, P., Bossier, P. (2017). Heat Shock Proteins in Fish Health and Diseases: A Pharmacological Perspective. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins in Veterinary Medicine and Sciences. Heat Shock Proteins, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-73377-7_7

Download citation

Publish with us

Policies and ethics