Skip to main content

Heat Shock Protein as an Adjuvant in Veterinary Vaccines

  • Chapter
  • First Online:
Heat Shock Proteins in Veterinary Medicine and Sciences

Abstract

The conventional vaccines offer effective approaches to control several infectious diseases till date but are not always safe. In search for relatively safer vaccines, the developed new generation vaccines possess weak immunogenicity. Adjuvants are used to potentiate the immune responses induced by vaccine antigens and to achieve a desirable type of response. Heat shock proteins (HSP) are explored as adjuvants as well as therapeutic targets against tumors. HSP are ubiquitous group of proteins conserved in nature and induced to over express during various stressful conditions including heat. HSP are the single most abundant group of proteins inside the cell and during non-apoptotic cell death, they act as danger associated molecular patterns (DAMPs) and recognized by pattern recognition receptors (PRRs) present on the surface or inside the host cells resulting in stimulation of cells involved in immunity. The molecular mechanisms involved in the adjuvant activity of HSP are not fully understood. In this chapter, we will focus on some of the established functions of HSP and study its role as an adjuvant in veterinary vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APCs:

Antigen presenting cells

CCR5:

Chemokine receptor 5

CTL:

Cytotoxic T lymphocyte

DAMPs:

Danger associated molecular patterns

DCs:

Dendritic cells

GM-CSF:

Granulocyte-macrophage colony-stimulating factor;

gp96:

Glucose-regulated protein

HSP:

Heat shock proteins

IFN-γ:

Interferon gamma

LOX-1:

Lectin-like oxidized low-density lipoprotein (LDL) receptor-1

LRP1:

Lipoprotein receptor 1

MAP:

Mycobacterium avium paratuberculosis

MCP-1:

Monocyte chemo attractant protein-1

MHC:

Major histocompatibility complex

MIP-1:

Macrophage inflammatory protein-1

NOS:

Nitric oxide synthetase

PAMPs:

Pathogen associated molecular patterns

PRRs:

Pattern recognition receptors

RANTES:

Regulated upon activation normal T cell expressed and secreted

SREC-1:

Scavenger receptor expressed by endothelial cells-1

TAP:

Transporter associated with antigen processing proteins

TLRs:

Toll-like receptors

TNF-α:

Tumor necrosis factor-alpha

References

  • Aosai, F., Chen, M., Kang, H. K., et al. (2002). Toxoplasma gondii-derived heat shock proteinHSP70 functions as a B cell mitogen. Cell Stress & Chaperones, 7, 357–364.

    Article  CAS  Google Scholar 

  • Aujla, S. J., Chan, Y. R., Zheng, M., et al. (2008). IL-22 mediates mucosal host defense against gram-negative bacterial pneumonia. Nature Medicine, 14, 275–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu, S., Binder, R. J., Suto, R., Anderson, K. M., & Srivastava, P. K. (2000). Necrotic not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. International Immunology, 12, 1539–1546.

    Article  CAS  PubMed  Google Scholar 

  • Basu, S., Binder, R. J., Ramalingam, T., & Srivastava, P. K. (2001). CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity, 14, 303–313.

    Article  CAS  PubMed  Google Scholar 

  • Berwin, B., Hart, J. P., Rice, S., Gass, C., Pizzo, S. V., Post, S. R., & Nicchitta, C. V. (2003). Scavenger receptor-A mediates gp96/GRP94 and calreticulin internalization by antigen-presenting cells. The EMBO Journal, J22, 6127–6136.

    Article  Google Scholar 

  • Binder, R. J. (2014). Functions of heat shock proteins in pathways of the innate and adaptive immune system. Journal of Immunology, 193, 5765–5771.

    Article  CAS  Google Scholar 

  • Binder, R. J., & Srivastava, P. K. (2004). Essential role of CD91 in re-presentation of gp96-chaperoned peptides. Proceedings of the National Academy of Sciences, 101, 6128–6133.

    Article  CAS  Google Scholar 

  • Blachere, N. E., Li, Z., Chandawarkar, R. Y., et al. (1997). Heat shock protein–peptide complexes,reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. The Journal of Experimental Medicine, 186, 1315–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogers, W. M. J. M., Bergmeier, L. A., Oostermeijer, H., et al. (2004a). CCR5 targeted SIV vaccination strategy preventing or inhibiting SIV infection. Vaccine, 22, 2974–2984.

    Article  CAS  PubMed  Google Scholar 

  • Bogers, W. M., Ma, J., Oostermeijer, H., et al. (2004b). A novel HIV-CCR5 receptor vaccine strategy in the control of mucosal SIV/HIV infection. AIDS, 18, 25–36.

    Article  PubMed  Google Scholar 

  • Bonato, V. L. D., Goncalves, E. D. C., Soares, E. G., Sartori, A., Coelho-Castelo, A. A., & Silva, C. L. (2004). Immune regulatory effect of pHSP65 DNA therapy in pulmonary tuberculosis: Activation of CD8+ cells, interferon-gamma recovery and reduction of lung injury. Immunology, 113, 130–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonorino, C., Nardi, N. B., Zhang, X., & Wysocki, L. J. (1998). Characteristics of the strong antibody response to mycobacterial Hsp70: A primary, T cell-dependent IgG response with no evidence of natural priming or gamma delta T cell involvement. Journal of Immunology, 161, 5210–5216.

    CAS  Google Scholar 

  • Brenner, B. G., & Wainberg, Z. (2001). Heat shock proteins: Novel therapeutic tools for HIV-infection? Expert Opinion on Biological Therapy, 1, 67–77.

    Article  CAS  PubMed  Google Scholar 

  • Calderwood, S. K., Gong, J., & Murshid, A. (2016). Extracellular HSP: The complicated roles of extracellular HSP in immunity. Frontiers in Immunology, 7, 159.

    PubMed  PubMed Central  Google Scholar 

  • Chen, Y. L., Wang, S. N., Yang, W. J., Lin, H. H., & Shiuan, D. (2003). Expression and immunogenicity of mycoplasma hyopneumoniae heat shock protein antigen P42 by DNA vaccination. Infection and Immunity, 71, 1155–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, D. X., Su, Y. R., Shao, G. Z., & Qian, Z. C. (2004). Purification of heat shock protein 70-associated tumor peptides and their antitumor immunity to hepatoma in mice. World Journal of Gastroenterology, 10, 361–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, W. F., Hung, C. F., Chai, C. Y., et al. (2001). Enhancement of Sindbis virus self-replicating RNA vaccine potency by linkage of mycobacterium tuberculosis heat shock protein 70 gene to an antigen gene. Journal of Immunology, 166, 6218–6226.

    Article  CAS  Google Scholar 

  • Colaco, C. A. L. S., Bailey, C. R., Keeble, J., & Walker, K. B. (2004). BCG (Bacille Calmette–Guérin) HspCs (heat-shock protein–peptide complexes) induce T-helper 1 responses and protect against live challenge in a murine aerosol challenge model of pulmonary tuberculosis. Biochemical Society Transactions, 32, 626–628.

    Article  CAS  PubMed  Google Scholar 

  • Craig, E. A. (1985). The heat shock response. CRC Critical Reviews in Biochemistry, 18, 239–280.

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamoorthy, G., Samykutty, A. K., Munirathinam, G., Shinde, G. B., Nutman, T., Reddy, M. V., & Kalyanasundaram, R. (2012). Biochemical characterization and evaluation of a Brugia malayi small heat shock protein as a vaccine against lymphatic Filariasis. PLoS One, 7, e34077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhiman, R., Indramohan, M., Barnes, P. F., Nayak, R. C., Paidipally, P., Rao, L. V., & Vankayalapati, R. (2009). IL-22 Produced by human NK cells inhibits growth of Mycobacterium tuberculosis by enhancing phagolysosomal fusion. Journal of Immunology, 183, 6639–6623.

    Article  CAS  Google Scholar 

  • Doody, A. D. H., Kovalchin, J. T., Mihalyo, M. A., Hagymasi, A. T., Drake, C. G., & Adler, A. J. (2004). Glycoprotein 96 can chaperone both MHC class I- and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T cell effector function. Journal of Immunology, 172, 6087–6092.

    Article  CAS  Google Scholar 

  • Duan, M. M., Xu, R. M., Yuan, C. X., et al. (2015). SjHSP70, a recombinant Schistosoma Japonicum heat shock protein 70, is immunostimulatory and induces protective immunity against cercarial challenge in mice. Parasitology Research, 114, 3415–3429.

    Article  PubMed  Google Scholar 

  • Ebrahimi, S. M., & Tebianian, M. (2010). Heterologous expression, purification and characterization of the influenza a virus M2e gene fused to mycobacterium tuberculosis HSP70(359-610) in prokaryotic system as a fusion protein. Molecular Biology Reports, 37, 2877–2883.

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi, S. M., Dabaghian, M., Tebianian, M., & Zabeh, M. H. (2012). In contrast to conventional inactivated influenza vaccines, 4xM2e.HSP70c fusion protein fully protected mice against lethal dose of H1, H3 and H9 influenza a isolates circulating in Iran. Virology, 430, 63–72.

    Article  CAS  PubMed  Google Scholar 

  • de Filippo, A., Binder, R. J., Camisaschi, C., et al. (2008). Human plasmacytoid dendritic cells interact with gp96 via CD91 and regulate inflammatory responses. Journal of Immunology, 181, 6525–6535.

    Article  Google Scholar 

  • Floto, R. A., MacAry, P. A., Boname, J. M., et al. (2006). Dendritic cell stimulation by mycobacterial Hsp70 is mediated through CCR5. Science, 314, 454–468.

    Article  CAS  PubMed  Google Scholar 

  • Gajadhar, A. A., Pozio, E., Ray Gamble, H., et al. (2009). Trichinella diagnostics and control: Mandatory and best practices for ensuring food safety. Veterinary Parasitology, 159, 197–205.

    Article  PubMed  Google Scholar 

  • Galli, V., Simionatto, S., Marchioro, S. B., Fisch, A., Gomes, C. K., Conceição, F. R., & Dellagostin, O. A. (2012). Immunisation of mice with mycoplasma hyopneumoniae antigens P37, P42, P46 and P95 delivered as recombinant subunit or DNA vaccines. Vaccine, 31, 135–140.

    Article  CAS  PubMed  Google Scholar 

  • Guy, B. (2007). The perfect mix: Recent progress in adjuvant research. Nature Reviews Microbiology, 5, 505–517.

    CAS  PubMed  Google Scholar 

  • Hirayama, E., Atagi, H., Hiraki, A., & Kim, J. (2004). Heat shock protein 70 is related to thermal inhibition of nuclear export of the influenza virus ribonucleoprotein complex. Journal of Virology, 78, 1263–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorge, S., de Oliveira, N. R., Marchioro, S. B., et al. (2014). The mycoplasma hyopneumoniae recombinant heat shock protein P42 induces an immune response in pigs under field conditions. Comparative Immunology, Microbiology and Infectious Diseases, 37, 229–236.

    Article  PubMed  Google Scholar 

  • Ju, Y., Fan, H., Liu, J., et al. (2014). Heat shock protein gp96 adjuvant induces T cell responses and cross-protection to a split influenza vaccine. Vaccine, 32, 2703–2711.

    Article  CAS  PubMed  Google Scholar 

  • Kang, H. K., Lee, H. Y., Lee, Y. N., Jo, E. J., Kim, J. I., Aosai, F., Yano, A., Kwak, J. Y., & Bae, Y. S. (2004). Toxoplasma gondii-derived heat shock protein 70 stimulates the maturation of human monocyte-derived dendritic cells. Biochemical and Biophysical Research Communications, 322, 899–904.

    Article  CAS  PubMed  Google Scholar 

  • Kaur, T., Sobti, R. C., & Kaur, S. (2011). Cocktail of gp63 and Hsp70 induces protection against Leishmania donovani in BALB/c mice. Parasite Immunology, 33, 95–103.

    Article  CAS  PubMed  Google Scholar 

  • Koets, A. P., Rutten, V. P. M. G., de Boer, M., Bakker, D., Valentin-Weigand, P., & van Eden, W. (2001). Differential changes in heat shock protein- lipoarabinomannan-, and purified protein derivative-specific immunoglobulin G1 and G2 isotype responses during bovine Mycobacterium Avium subsp. paratuberculosis infection. Infection and Immunity, 69, 1492–1498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koets, A., Hoek, A., Langelaar, M., Overdijk, M., Santema, W., Franken, P., Eden, W. V., & Rutten, V. (2006). Mycobacterial 70kD heat-shock protein is an effective subunit vaccine against bovine paratuberculosis. Vaccine, 24, 2550–2559.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. P., Raez, L. E., & Podack, E. R. (2006). Heat shock protein–based cancer vaccines. Hematology/Oncology Clinics of North America, 20, 637–659.

    Article  PubMed  Google Scholar 

  • Li, Z., & Srivastava, P. (2004). Heat-shock proteins. In Current protocols in immunology (p. appendix 1T). Hoboken: John Wiley.

    Google Scholar 

  • Li, X., Yang, X., Li, L., Liu, H., & Liu, J. (2006). A truncated C-terminal fragment of Mycobacterium tuberculosis HSP70 gene enhanced potency of HBV DNA vaccine. Vaccine, 24, 3321–3331.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Li, K. N., Gao, J., Cui, J. H., Liu, Y. F., & Yang, S. J. (2008). Heat shock protein 70 fused to or complexed with hantavirus nucleocapsid protein significantly enhances specific humoral and cellular immune responses in C57BL/6 mice. Vaccine, 26, 3175–3187.

    Article  CAS  PubMed  Google Scholar 

  • Li, G., Zhang, J., Tong, X., Li, G., Zhang, J., Tong, X., Liu, W., & Ye, X. (2011). Heat shock protein 70 inhibits the activity of influenza a virus ribonucleoprotein and blocks the replication of virus in vitro and in vivo. PLoS One, 6, e16546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long, K. H., Gomez, F. J., Morris, R. E., & Newman, S. L. (2003). Identification of heat shock protein 60 as the ligand on Histoplasma capsulatum that mediates binding to CD18 receptors on human macrophages. Journal of Immunology, 170, 487–494.

    Article  CAS  Google Scholar 

  • Maity, H. K., Dey, S., Mohan, C. M., Khulape, S. A., Pathak, D. C., & Vakharia, V. N. (2015). Protective efficacy of a DNA vaccine construct encoding the VP2 gene of infectious bursal disease and a truncated HSP70 of mycobacterium tuberculosis in chickens. Vaccine, 33, 1033–1039.

    Article  CAS  PubMed  Google Scholar 

  • Manjili, M. H., Park, J., Facciponte, J. G., & Subjeck, J. R. (2005). HSP110 induces “danger signals” upon interaction with antigen presenting cells and mouse mammary carcinoma. Immunobiology, 210, 295–303.

    Article  CAS  PubMed  Google Scholar 

  • Matsutake, T., Sawamura, T., & Srivastava, P. K. (2010). High efficiency CD91- and LOX-1-mediated re-presentation of gp96-chaperoned peptides by MHC II molecules. Cancer Immunity, 10, 7.

    PubMed  PubMed Central  Google Scholar 

  • Mun, H. S., Aosai, F., Norose, K., Chen, M., Piao, L. X., Takeuchi, O., Akira, S., Ishikura, H., & Yano, A. (2003). TLR2 as an essential molecule for protective immunity against toxoplasma gondii infection. International Immunology, 15, 1081–1087.

    Article  CAS  PubMed  Google Scholar 

  • Murshid, A., Borges, T. J., & Calderwood, S. K. (2015). Emerging roles for scavenger receptor SREC-I in immunity. Cytokine, 75, 256–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murshid, A., Borges, T. J., Lang, B. J., & Calderwood, S. K. (2016). The scavenger receptor SREC-I cooperates with toll-like receptors to trigger inflammatory innate immune responses. Frontiers in Immunology, 7, 226.

    Article  PubMed  PubMed Central  Google Scholar 

  • Negash, T., Liman, M., & Rautenschlein, S. (2013). Mucosal application of cationic poly(d, l-lactide-co-glycolide) microparticles as carriers of DNA vaccine and adjuvants to protect chickens against infectious bursal disease. Vaccine, 31, 3656–3662.

    Article  CAS  PubMed  Google Scholar 

  • Okuni, J. B., Kateete, D. P., Okee, M., Nanteza, A., Joloba, M., & Ojok, L. (2017). Application of antibodies to recombinant heat shock protein 70 in immunohistochemical diagnosis of mycobacterium avium subspecies paratuberculosis in tissues of naturally infected cattle. Irish Veterinary Journal, 70, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oura, J., Tamura, Y., Kamiguchi, K., Kutomi, G., Sahara, H., Torigoe, T., Himi, T., & Sato, N. (2011). Extracellular heat shock protein 90 plays a role in translocating chaperoned antigen from endosome to proteasome for generating antigenic peptide to be cross-presented by dendritic cells. International Immunology, 23, 223–237.

    Article  CAS  PubMed  Google Scholar 

  • Park, J. E., Facciponte, J., Chen, X., MacDonald, I., Repasky, E. A., Manjili, M. H., Wang, X. Y., & Subjeck, J. R. (2006). Chaperoning function of stress protein grp170, a member of the hsp70 superfamily, is responsible for its immunoadjuvant activity. Cancer Research, 66, 1161–1168.

    Article  CAS  PubMed  Google Scholar 

  • Parmiani, G., Testori, A., Maio, M., Castelli, C., Rivoltini, L., Pilla, L., Belli, F., Mazzaferro, V., Coppa, J., Patuzzo, R., Sertoli, M. R., Hoos, A., Srivastava, P. K., & Santinami, M. (2004). Heat shock proteins and their use as anticancer vaccines. Clinical Cancer Research, 10, 8142–8146.

    Article  CAS  PubMed  Google Scholar 

  • Qazi, K. R., Qazi, M. R., Julián, E., Singh, M., Abedi-Valugerdi, M., & Fernández, C. (2005). Exposure to mycobacteria primes the immune system for evolutionarily diverse heat shock proteins. Infection and Immunity, 73, 7687–7696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramon, G. (1924). Sur la toxine et sur l’anatoxine diphtheriques. Annales de l'Institut Pasteur, 38, 1–10.

    CAS  Google Scholar 

  • Rico, A. I., Gironès, N., Fresno, M., Alonso, C., & Requena, J. M. (2002). The heat shock proteins, Hsp70 and Hsp83, of Leishmania infantum are mitogens for mouse B cells. Cell Stress & Chaperones, 7, 339–346.

    Article  CAS  Google Scholar 

  • Ritossa, F. (1962). A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia, 18, 571–573.

    Article  CAS  Google Scholar 

  • Sanchez, G. I., Sedegah, M., Rogers, W. O., Jones, T. R., Sacci, J., Witney, A., Carucci, D. J., Kumar, N., & Hoffman, S. L. (2001). Immunogenicity and protective efficacy of a plasmodium yoelii Hsp60 DNA vaccine in BALB/c mice. Infection and Immunity, 69, 3897–3905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheckelhoff, M., & Deepe, G. S. (2002). The protective immune response to heat shock protein 60 of Histoplasma capsulatum is mediated by a subset of V beta 8.1/8.2+ T cells. Journal of Immunology, 169, 5818–5826.

    Article  CAS  Google Scholar 

  • Schulz, S. M., Köhler, G., Schütze, N., et al. (2008). Protective immunity to systemic infection with attenuated Salmonella enterica serovar enteritidis in the absence of IL-12 is associated with IL-23-dependent IL-22, but not IL-17. Journal of Immunology, 181, 7891–7901.

    Article  CAS  Google Scholar 

  • Simionatto, S., Marchioro, S. B., Galli, V., et al. (2012). Immunological characterization of mycoplasma hyopneumoniae recombinant proteins. Comp. Immunol. Microbiol. Infectious Diseases, 35, 209–216.

    Google Scholar 

  • Srivastava, P. (2002). Roles of heat-shock proteins in innate and adaptive immunity. Nature Reviews Immunology, 2, 185–194.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, P. K., DeLeo, A. B., & Old, L. J. (1986). Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proceedings of the National Academy of Sciences of the United States of America, 83, 3407–3411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzue, K., Zhou, X., Eisen, H. N., & Young, R. A. (1997). Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proceedings of the National Academy of Sciences of the United States of America, 94(13), 146–151.

    Google Scholar 

  • Udono, H., & Srivastava, P. K. (1993). Heat shock protein 70-associated peptides elicit specific cancer immunity. Journal of Experimental Medicine, 178, 1391–1396.

    Article  CAS  PubMed  Google Scholar 

  • Udono, H., & Srivastava, P. K. (1994). Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. Journal of Immunology, 152, 5398–5403.

    CAS  Google Scholar 

  • Udono, H., Yamano, T., Kawabata, Y., Ueda, M., & Yui, K. (2001). Generation of cytotoxic T lymphocytes by MHC class I ligands fused to heat shock cognate protein 70. International Immunology, 13, 1233–1242.

    Article  CAS  PubMed  Google Scholar 

  • Uto, T., Tsujimura, K., Uchijima, M., et al. (2011). A novel vaccine strategy to induce mycobacterial antigen-specific Th1 responses by utilizing the C-terminal domain of heat shock protein 70. FEMS Immunology and Medical Microbiology, 61, 189–196.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Zhu, X., Yang, Y., et al. (2009). Molecular cloning and characterization of heat shock protein 70 from Trichinella spiralis. Acta Tropica, 110, 46–51.

    Article  CAS  PubMed  Google Scholar 

  • Warger, T., Hilf, N., Rechtsteiner, G., et al. (2006). Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and adaptive immune responses. The Journal of Biological Chemistry, 281, 22545–22553.

    Article  CAS  PubMed  Google Scholar 

  • Williams, J. H. H., & Ireland, H. E. (2007). Sensing danger--Hsp72 and HMGB1 as candidate signals. Journal of Leukocyte Biology, 83, 489–492.

    Article  PubMed  Google Scholar 

  • Wolk, K., & Sabat, R. (2006). Interleukin-22: A novel T- and NK-cell derived cytokine that regulates the biology of tissue cells. Cytokine & Growth Factor Reviews, 17, 367–380.

    Article  CAS  Google Scholar 

  • Wu, S., Hong, F., Gewirth, D., Guo, B., Liu, B., & Li, Z. (2012). The molecular chaperone gp96/GRP94 interacts with toll-like receptors and integrins via its C-terminal hydrophobic domain. The Journal of Biological Chemistry, 287, 6735–6742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, J., Liu, T., Rios, Z., Mei, Q., Lin, X., & Cao, S. (2017). Heat shock proteins and cancer. Trends in Pharmacological Sciences 38, 226–256.

    Google Scholar 

  • Yang, Y., Liu, B., Dai, J., et al. (2007). Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity, 26, 215–226.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, Y., Zhang, Z., Yang, J., Chen, X., Cui, S., & Zhu, X. (2010). Oral vaccination with Ts87 DNA vaccine delivered by attenuated salmonella typhimurium elicits a protective immune response against Trichinella spiralis larval challenge. Vaccine, 28, 2735–2742.

    Article  CAS  PubMed  Google Scholar 

  • Yang, P., Wang, W., Gu, H., et al. (2014). Protection against influenza H7N9 virus challenge with a recombinant NP–M1–HSP60 protein vaccine construct in BALB/c mice. Antiviral Research, 111, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, J., Kashiwagi, S., Reeves, P., et al. (2014). A novel mycobacterial Hsp70-containing fusion protein targeting mesothelin augments antitumor immunity and prolongs survival in murine models of ovarian cancer and mesothelioma. Journal of Hematology & Oncology, 7, 15.

    Article  Google Scholar 

  • Zhang, L., Ma, L., Liu, R., et al. (2012). Eimeria tenella heat shock protein 70 enhances protection of recombinant microneme protein MIC2 subunit antigen vaccination against E.Tenella challenge. Veterinary Parasitology, 188, 239–246.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, Y., Valdez, P. A., Danilenko, D. M., et al. (2008). Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Medicine, 14, 282–289.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Director, Indian Veterinary Research Institute, for supporting and extending the facilities. A part of this work was supported by a research grant from the Department of Biotechnology, Ministry of Science and Technology, Government of India (BT/PR12518/ADV/57/01/2009). We also acknowledge Dr. Sinéad Lyons, Postdoctoral Research Associate, School of Biological Sciences, University of Reading for proof reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohini Dey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dey, S. et al. (2017). Heat Shock Protein as an Adjuvant in Veterinary Vaccines. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins in Veterinary Medicine and Sciences. Heat Shock Proteins, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-73377-7_4

Download citation

Publish with us

Policies and ethics