Skip to main content

Numerical Simulation of a Contractivity Based Multiscale Cancer Invasion Model

  • Conference paper
  • First Online:
Multiscale Models in Mechano and Tumor Biology

Abstract

We present a problem-suited numerical method for a particularly challenging cancer invasion model. This model is a multiscale haptotaxis advection-reaction-diffusion system that describes the macroscopic dynamics of two types of cancer cells coupled with microscopic dynamics of the cells adhesion on the extracellular matrix. The difficulties to overcome arise from the non-constant advection and diffusion coefficients, a time delay term, as well as stiff reaction terms.

Our numerical method is a second order finite volume implicit-explicit scheme adjusted to include (a) non-constant diffusion coefficients in the implicit part, (b) an interpolation technique for the time delay, and (c) a restriction on the time increment for the stiff reaction terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alt W, Lauffenburger D (1987) Transient behavior of a chemotaxis system modelling certain types of tissue inflammation. J Math Biol 24(6):691–722

    Google Scholar 

  2. Andasari V, Gerisch A, Lolas G, South A, Chaplain M (2011) Mathematical modelling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J Math Biol 63(1):141–171

    Google Scholar 

  3. Anderson A, Chaplain M, Newman E, Steele R, Thompson A (2000) Mathematical modelling of tumour invasion and metastasis. Comput Math Methods Med 2(2):129–154

    Google Scholar 

  4. Armitage P, Doll R (1954) The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer 8(1):1

    Google Scholar 

  5. Bellomo N, Li N, Maini P (2008) On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math Models Methods Appl Sci 18(04):593–646

    Google Scholar 

  6. Chaplain M, Lolas G (2005) Mathematical modelling of cancer cell invasion of tissue. the role of the urokinase plasminogen activation system. Math Models Methods Appl Sci 15(11):1685–1734

    Google Scholar 

  7. Chertock A, Kurganov A (2008) A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models. Numer Math 111(2):169–205

    Google Scholar 

  8. Courant R, Friedrichs K, Lewy H (1928) über die partiellen differenzengleichungen der mathematischen physik. Math Ann 100(1):32–74

    Google Scholar 

  9. Domschke P, Trucu D, Gerisch A, Chaplain M (2014) Mathematical modelling of cancer invasion: Implications of cell adhesion variability for tumour infiltrative growth patterns. J Theor Biol 361:41–60

    Google Scholar 

  10. Fisher J (1958) Multiple-mutation theory of carcinogenesis. Nature 181(4609):651–652

    Google Scholar 

  11. Ganguly R, Puri I (2006) Mathematical model for the cancer stem cell hypothesis. Cell Prolif 39(1):3–14

    Google Scholar 

  12. Gao D, Vahdat L, Wong S, Chang J, Mittal V (2012) Microenvironmental regulation of epithelial-mesenchymal transitions in cancer. Cancer Res 72(19):4883–4889

    Google Scholar 

  13. Gerisch A, Chaplain M (2008) Mathematical modelling of cancer cell invasion of tissue: local and nonlocal models and the effect of adhesion. J Theor Biol 250(4):684–704

    Google Scholar 

  14. Gupta P, Chaffer C, Weinberg R (2009) Cancer stem cells: mirage or reality? Nat Med 15(9):1010–1012

    Google Scholar 

  15. Hellmann N, Kolbe N, Sfakianakis N (2016) A mathematical insight in the epithelial-mesenchymal-like transition in cancer cells and its effect in the invasion of the extracellular matrix. Bull Braz Math Soc 47(1):397–412

    Google Scholar 

  16. Johnston M, Maini P, Jonathan-Chapman S, Edwards C, Bodmer W (2010) On the proportion of cancer stem cells in a tumour. J Theor Biol 266(4):708–711

    Google Scholar 

  17. Katsuno Y, Lamouille S, Derynck R (2013) TGF-β signaling and epithelial–mesenchymal transition in cancer progression. Curr Opin Oncol 25(1):76–84

    Google Scholar 

  18. Keller E, Segel L (1970) Initiation of slime mold aggregation viewed as an instability. J Theor Biol 26(3):399–415

    Google Scholar 

  19. Kennedy C, Carpenter M (2003) Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl Numer Math 1(44):139–181

    Google Scholar 

  20. Kolbe N, Kat’uchová J, Sfakianakis N, Hellmann N, Lukáčová-Medvid’ová M (2016) A study on time discretization and adaptive mesh refinement methods for the simulation of cancer invasion: the urokinase model. Appl Math Comput 273:353–376

    Google Scholar 

  21. Krylov A (1931) On the numerical solution of the equation by which in technical questions frequencies of small oscillations of material systems are determined. Otdel mat i estest nauk VII(4):491–539

    Google Scholar 

  22. Kurganov A, Lukáčová-Medvid’ová M (2014) Numerical study of two-species chemotaxis models. Discrete Cont Dyn-B 19(1):131–152

    Google Scholar 

  23. Mani S, Guo W, Liao M, Eaton E, Ayyanan A, Zhou A, Brooks M, Reinhard F, Zhang C, Shipitsin M, Campbell L, Polyak K, Brisken C, Yang J, Weinberg R (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715

    Google Scholar 

  24. Meral G, Stinner C, Surulescu C (2015) On the multiscale model involving cell contractivity and its effects on tumour invasion. Discret Cont Dyn Syst 20:189–213

    Google Scholar 

  25. Michor F (2008) Mathematical models of cancer stem cells. J Clin Oncol 26(17):2854–2861

    Google Scholar 

  26. Neagu A, Mironov V, Kosztin I, Barz B, Neagu M, Moreno-Rodriguez R, Markwald R, Forgacs G (2010) Computational modelling of epithelial–mesenchymal transformations. Biosystems 100(1):23–30

    Google Scholar 

  27. Nordling C (1953) A new theory on the cancer-inducing mechanism. Br J Cancer 7(1):68

    Google Scholar 

  28. Painter K, Hillen T (2011) Spatio-temporal chaos in a chemotaxis model. Phys D 240(4):363–375

    Google Scholar 

  29. Patlak C (1953) Random walk with persistence and external bias. Bull Math Biophys 15:311–338

    Google Scholar 

  30. Perumpanani A, Sherratt J, Norbury J, Byrne H (1996) Biological inferences from a mathematical model for malignant invasion. Invasion Metastasis 16(4–5):209–221

    Google Scholar 

  31. Preziosi L (2003) Cancer modelling and simulation. CRC, Boca Raton

    Google Scholar 

  32. Reya T, Morrison S, Clarke M, Weissman I (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Google Scholar 

  33. Sfakianakis N, Kolbe N, Hellmann N, Lukacova M (2016) A multiscale approach to the migration of cancer stem cells: mathematical modelling and simulations. arXiv: 160405056

    Google Scholar 

  34. Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29(34):4741–4751

    Article  Google Scholar 

  35. Stiehl T, Marciniak-Czochra A (2012) Mathematical modeling of leukemogenesis and cancer stem cell dynamics. Math Model Nat Phenom 7(01):166–202

    Article  MathSciNet  MATH  Google Scholar 

  36. Stinner C, Surulescu C, Uatay A (2015) Global existence for a go-or-grow multiscale model for tumor invasion with therapy. Preprint. http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:386-kluedo-42943

    MATH  Google Scholar 

  37. Szymanska Z, Rodrigo C, Lachowicz M, Chaplain M (2009) Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions. Math Models Methods Appl Sci 19(02):257–281

    Article  MathSciNet  MATH  Google Scholar 

  38. Thiery J (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454

    Article  Google Scholar 

  39. Vainstein V, Kirnasovsky O, Kogan Y, Agur Z (2012) Strategies for cancer stem cell elimination: insights from mathematical modelling. J Theor Biol 298:32–41

    Article  Google Scholar 

  40. van der Vorst HA (1992) Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J Sci Comput 13(2):631–644

    Article  MathSciNet  MATH  Google Scholar 

  41. Van Leer B (1977) Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J Comput Phys 23(3):276–299

    MATH  Google Scholar 

  42. Wiebe B (2016) Numerical simulations of multiscale cancer invasion models. Master’s thesis, University of Mainz. Supervised by M. Lukáčová-Medvid’ová, N. Sfakianakis

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Sfakianakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kolbe, N., Lukáčová-Medvid’ová, M., Sfakianakis, N., Wiebe, B. (2017). Numerical Simulation of a Contractivity Based Multiscale Cancer Invasion Model. In: Gerisch, A., Penta, R., Lang, J. (eds) Multiscale Models in Mechano and Tumor Biology . Lecture Notes in Computational Science and Engineering, vol 122. Springer, Cham. https://doi.org/10.1007/978-3-319-73371-5_4

Download citation

Publish with us

Policies and ethics