Analysis and Characterization of GPU Benchmarks for Kernel Concurrency Efficiency

  • Pablo Carvalho
  • Lúcia M. A. Drummond
  • Cristiana BentesEmail author
  • Esteban Clua
  • Edson Cataldo
  • Leandro A. J. Marzulo
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 796)


Graphical Processing Units (GPUs) became an important platform to general purpose computing, thanks to their high performance and low cost when compared to CPUs. However, programming GPUs requires a different mindset and optimization techniques that take advantage of the peculiarities of the GPU architecture. Moreover, GPUs are rapidly changing, in the sense of including capabilities that can improve performance of general purpose applications, such as support for concurrent execution. Thus, benchmark suites developed to evaluate GPU performance and scalability should take those aspects into account and could be quite different from traditional CPU benchmarks. Nowadays, Rodinia, Parboil and SHOC are the main benchmark suites for evaluating GPUs. This work analyzes these benchmark suites in detail and categorizes their behavior in terms of computation type (integer or float), usage of memory hierarchy, efficiency and hardware occupancy. We also intend to evaluate similarities between the kernels of those suites. This characterization will be useful to disclosure the resource requirements of the kernels of these benchmarks that may affect further concurrent execution.


  1. 1.
    Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.-H., Skadron, K.: Rodinia: a benchmark suite for heterogeneous computing. In: Proceedings of the IEEE International Symposium on Workload Characterization (IISWC), pp. 44–54 (2009)Google Scholar
  2. 2.
    Stratton, J.A., Rodrigues, C., Sung, I.-J., Obeid, N., Chang, L.-W., Anssari, N., Liu, G.D., Hwu, W.M.W.: Parboil: a revised benchmark suite for scientific and commercial throughput computing (2012)Google Scholar
  3. 3.
    Danalis, A., Marin, G., McCurdy, C., Meredith, J.S., Roth, P.C., Spafford, K., Tipparaju, V., Vetter, J.S.: The scalable heterogeneous computing (SHOC) benchmark suite. In: Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units, pp. 63–74 (2010)Google Scholar
  4. 4.
    Pai, S., Thazhuthaveetil, M.J., Govindarajan, R.: Improving GPGPU concurrency with elastic kernels. In: ACM SIGPLAN Notices, vol. 48, pp. 407–418. ACM (2013)Google Scholar
  5. 5.
    Che, S., Sheaffer, J.W., Boyer, M., Szafaryn, L.G., Wang, L., Skadron, K.: A characterization of the Rodinia benchmark suite with comparison to contemporary CMP workloads. In: Proceedings of the IEEE International Symposium on Workload Characterization (2010)Google Scholar
  6. 6.
    Kerr, A., Diamos, G., Yalamanchili, S.: A characterization and analysis of PTX kernels. In: IEEE International Symposium on Workload Characterization, IISWC 2009, pp. 3–12. IEEE (2009)Google Scholar
  7. 7.
    Goswami, N., Shankar, R., Joshi, M., Li, T.: Exploring GPGPU workloads: characterization methodology, analysis and microarchitecture evaluation implications. In: 2010 IEEE International Symposium on Workload Characterization (IISWC), pp. 1–10. IEEE (2010)Google Scholar
  8. 8.
    Burtscher, M., Nasre, R., Pingali, K.: A quantitative study of irregular programs on GPUs. In: 2012 IEEE International Symposium on Workload Characterization (IISWC), pp. 141–151. IEEE (2012)Google Scholar
  9. 9.
    O’Neil, M.A., Burtscher, M.: Microarchitectural performance characterization of irregular GPU kernels. In: 2014 IEEE International Symposium on Workload Characterization (IISWC), pp. 130–139. IEEE (2014)Google Scholar
  10. 10.
    Bakhoda, A., Yuan, G.L., Fung, W.W., Wong, H., Aamodt, T.M.: Analyzing CUDA workloads using a detailed GPU simulator. In: IEEE International Symposium on Performance Analysis of Systems and Software, ISPASS 2009, pp. 163–174. IEEE (2009)Google Scholar
  11. 11.
    Bienia, C.: Benchmarking Modern Multiprocessors. Princeton University, Princeton (2011)Google Scholar
  12. 12.
    Asanovic, K.: The landscape of parallel computing research: a view from Berkeley, Technical report UCB/EECS-2006-183, EECS Department, University of California, Berkley, CA, USA (2006)Google Scholar
  13. 13.
  14. 14.
    NVIDIA Corporation: Profiler user’s guide (2017)., an optional note
  15. 15.
    Bienia, C.: Benchmarking modern multiprocessors, Ph.D. thesis, Princeton University (2011)Google Scholar
  16. 16.
    Joshi, A., Phansalkar, A., Eeckhout, L., John, L.K.: Measuring benchmark similarity using inherent program characteristics. IEEE Trans. Comput. 55(6), 769–782 (2006)CrossRefGoogle Scholar
  17. 17.
    Che, S., Skadron, K.: Benchfriend: correlating the performance of GPU benchmarks. Int. J. High Perform. Comput. Appl. 28(2), 238–250 (2014)CrossRefGoogle Scholar
  18. 18.
    Spafford, K., Meredith, J., Vetter, J., Chen, J., Grout, R., Sankaran, R.: Accelerating S3D: a GPGPU case study. In: Lin, H.-X., Alexander, M., Forsell, M., Knüpfer, A., Prodan, R., Sousa, L., Streit, A. (eds.) Euro-Par 2009. LNCS, vol. 6043, pp. 122–131. Springer, Heidelberg (2010). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Pablo Carvalho
    • 1
  • Lúcia M. A. Drummond
    • 1
  • Cristiana Bentes
    • 2
    Email author
  • Esteban Clua
    • 1
  • Edson Cataldo
    • 3
  • Leandro A. J. Marzulo
    • 4
  1. 1.Instituto de ComputaçãoUniversidade Federal FluminenseNiteróiBrazil
  2. 2.Eng. de Sistemas e ComputaçãoUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Programa de Pós-graduação em Engenharia Elétrica e de TelecomunicaçõesUniversidade Federal FluminenseNiteróiBrazil
  4. 4.Ciência da ComputaçãoUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations