romeoLAB: A High Performance Training Platform for HPC, GPU and DeepLearning

  • Arnaud RenardEmail author
  • Jean-Matthieu Etancelin
  • Michael Krajecki
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 796)


In this pre-exascale era, we are observing a dramatic increase of the necessity of computer science courses dedicated to parallel programming on heterogeneous architectures. The full hybrid cluster Romeo has been used in that purpose since a long time in order to train master students and cluster users. The main issue for trainees is the cost of accessing and exploiting a production facility in a pedagogic context. The use of some specific techniques and software (SSH, workload manager, remote file system, ...) is mandatory without being part of courses prerequisites nor pedagogic objectives. The romeoLAB platform we developed at ROMEO HPC Center is an online interactive pedagogic platform for HPC and GPU technologies courses. Its main purpose is to simplify the process of resources usage in order to focus on the taught subjects. This paper presents the romeoLAB architecture as well as its motivations, usages and future improvements.


Programming education Online education HPC GPU Parallel programming Web application Teaching and learning 


  1. 1.
    Dakkak, A., Pearson, C., Hwu, W.M.: WebGPU: a scalable online development platform for GPU programming courses. In: 2016 IEEE International Parallel and Distributed Processing Symposium Workshops, pp. 942–949. IEEE (2016)Google Scholar
  2. 2.
    Etancelin, J.-M.: IPython batch scheduler magic (2017).
  3. 3.
    Feng, A., Gardner, M., Feng, W.C.: Parallel programming with pictures is a Snap!. J. Parallel Distrib. Comput. 105, 150–162 (2017)CrossRefGoogle Scholar
  4. 4.
    Hundt, C., Schlarb, M., Schmidt, B.: SAUCE: a web application for interactive teaching and learning of parallel programming. J. Parallel Distrib. Comput. 105, 163–173 (2017). CrossRefGoogle Scholar
  5. 5.
    Breitner, J., Hecker, M., Snelting, G.: Der Grader Praktomat. Automatisierte Bewertung in der ProgrammierausbildungGoogle Scholar
  6. 6.
    Etancelin, J.M., Krajecki, M., Renard, A.: romeoLAB: turn your GPU-supercomputer to an high performance training platform (2017)Google Scholar
  7. 7.
    Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., et al.: Jupyter notebooks - a publishing format for reproducible computational workflows. In: Positioning and Power in Academic Publishing: Players, Agents and Agendas, pp. 87–90 (2016)Google Scholar
  8. 8.
    Lucas, L., Deleau, H., Battin, B., Lehuraux, J.: USE together, a WebRTC-based solution for multi-user presence desktop. In: Luo, Y. (ed.) CDVE 2017. LNCS, vol. 10451, pp. 228–235. Springer, Cham (2017). CrossRefGoogle Scholar
  9. 9.
    Goedicke, M., Striewe, M., Balz, M.: Computer aided assessments and programming exercises with JACK. ICB Research Reports 28, University Duisburg-Essen, Institute for Computer Science and Business Information Systems (ICB) (2008).
  10. 10.
    NVIDIA: qwikLABS (2017).
  11. 11.
    Project Jupyter: JupyterHub (2017).
  12. 12.
    qwikLABS (2017).
  13. 13.
    SageMath Inc.: CoCalc Collaborative Computation Online (2016).
  14. 14.
    Surhone, L.M., Tennoe, M.T., Henssonow, S.F.: Node.Js. Betascript Publishing, Mauritius (2010)Google Scholar
  15. 15.
    Delft University of Technology. WebLab, Online Learning Management System (2016).

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Arnaud Renard
    • 1
    Email author
  • Jean-Matthieu Etancelin
    • 1
  • Michael Krajecki
    • 1
  1. 1.ROMEO HPC Center and Department of Computer Science, CReSTIC (Centre de Recherche en STIC) EA3804University of Reims Champagne-ArdenneReimsFrance

Personalised recommendations