Advertisement

Energy Aware Multiobjective Scheduling in a Federation of Heterogeneous Datacenters

  • Santiago IturriagaEmail author
  • Sergio Nesmachnow
Conference paper
  • 536 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 796)

Abstract

Energy efficiency is key for datacenters, however nowadays datacenters are far from being energy efficient. This article proposes a multiobjective evolutionary approach for energy aware scheduling in a federation of heterogeneous datacenters. The proposed algorithm schedules workflows of tasks aiming at optimizing infrastructure usage, quality of service and energy consumption. We perform an extensive experimental evaluation with 100 problem instances, considering a diverse set of workflows and different size of scenarios. Results show the proposed approach is able to compute accurate schedules, outperforming traditional heuristic schedulers such as round robin or load balancing algorithm.

References

  1. 1.
    Ahmad, I., Ranka, S.: Handbook of Energy-Aware and Green Computing. Chapman & Hall/CRC, Boca Raton (2012)Google Scholar
  2. 2.
    Chen, S., Li, Z., Yang, B., Rudolph, G.: Quantum-inspired hyper-heuristics for energy-aware scheduling on heterogeneous computing systems. IEEE Trans. Parallel Distrib. Syst. 27(6), 1796–1810 (2016)CrossRefGoogle Scholar
  3. 3.
    de Assuncao, M., di Costanzo, A., Buyya, R.: Evaluating the cost-benefit of using cloud computing to extend the capacity of clusters, pp. 141–150 (2009)Google Scholar
  4. 4.
    Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)zbMATHGoogle Scholar
  5. 5.
    Dorronsoro, B., Nesmachnow, S., Taheri, J., Zomaya, A.Y., Talbi, E.-G., Bouvry, P.: A hierarchical approach for energy-efficient scheduling of large workloads in multicore distributed systems. Sustain. Comput.: Inform. Syst. 4(4), 252–261 (2014)Google Scholar
  6. 6.
    Durillo, J., Nebro, A.: jMetal: a Java framework for multi-objective optimization. Adv. Eng. Softw. 42, 760–771 (2011)CrossRefGoogle Scholar
  7. 7.
    Garg, R., Kumar Singh, A.: Energy-aware workflow scheduling in grid under QoS constraints. Arab. J. Sci. Eng. 41(2), 495–511 (2016)CrossRefGoogle Scholar
  8. 8.
    Iturriaga, S., Dorronsoro, B., Nesmachnow, S.: Multiobjective evolutionary algorithms for energy and service level scheduling in a federation of distributed datacenters. Int. Trans. Oper. Res. 24(1–2), 199–228 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Iturriaga, S., Nesmachnow, S.: Multiobjective scheduling of green-powered datacenters considering QoS and budget objectives. In: IEEE Innovative Smart Grid Technologies Latin America, pp. 570–573 (2015)Google Scholar
  10. 10.
    Iturriaga, S., Nesmachnow, S., Dorronsoro, B., Bouvry, P.: Energy efficient scheduling in heterogeneous systems with a parallel multiobjective local search. Comput. Inform. J. 32(2), 273–294 (2013)MathSciNetGoogle Scholar
  11. 11.
    Khan, S., Ahmad, I.: A cooperative game theoretical technique for joint optimization of energy consumption and response time in computational grids. IEEE Trans. Parallel Distrib. Syst. 20, 346–360 (2009)CrossRefGoogle Scholar
  12. 12.
    Kim, K., Buyya, R., Kim, J.: Power aware scheduling of bag-of-tasks applications with deadline constraints on DVS-enabled clusters. In: 7th IEEE International Symposium on Cluster Computing and the Grid, pp. 541–548 (2007)Google Scholar
  13. 13.
    Lee, Y., Zomaya, A.: Energy conscious scheduling for distributed computing systems under different operating conditions. IEEE Trans. Parallel Distrib. Syst. 22, 1374–1381 (2011)CrossRefGoogle Scholar
  14. 14.
    Li, Y., Liu, Y., Qian, D.: A heuristic energy-aware scheduling algorithm for heterogeneous clusters. In: 15th International Conference on Parallel and Distributed Systems, pp. 407–413 (2009)Google Scholar
  15. 15.
    Lindberg, P., Leingang, J., Lysaker, D., Khan, S., Li, J.: Comparison and analysis of eight scheduling heuristics for the optimization of energy consumption and makespan in large-scale distributed systems. J. Supercomput. 59(1), 323–360 (2012)CrossRefGoogle Scholar
  16. 16.
    Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y., Talbi, E.G., Zomaya, A., Tuyttens, D.: A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for cloud computing systems. J. Parallel Distrib. Comput. 71, 1497–1508 (2011)CrossRefGoogle Scholar
  17. 17.
    Moon, H., Chi, Y., Hacigümüş, H.: Performance evaluation of scheduling algorithms for database services with soft and hard SLAs. In: 2nd International Workshop on Data Intensive Computing in the Clouds, pp. 81–90 (2011)Google Scholar
  18. 18.
    Nesmachnow, S.: An overview of metaheuristics: accurate and efficient methods for optimisation. Int. J. Metaheuristics 3(4), 320–347 (2014)CrossRefGoogle Scholar
  19. 19.
    Nesmachnow, S., Dorronsoro, B., Pecero, J.E., Bouvry, P.: Energy-aware scheduling on multicore heterogeneous grid computing systems. J. Grid Comput. 11(4), 653–680 (2013)CrossRefGoogle Scholar
  20. 20.
    Nesmachnow, S., Perfumo, C., Goiri, Í.: Holistic multiobjective planning of datacenters powered by renewable energy. Cluster Comput. 18(4), 1379–1397 (2015)CrossRefGoogle Scholar
  21. 21.
    Pecero, J., Bouvry, P., Fraire, H., Khan, S.: A multi-objective grasp algorithm for joint optimization of energy consumption and schedule length of precedence-constrained applications. In: International Conference on Cloud and Green Computing, pp. 1–8 (2011)Google Scholar
  22. 22.
    Pinel, F., Dorronsoro, B., Pecero, J., Bouvry, P., Khan, S.: A two-phase heuristic for the energy-efficient scheduling of independent tasks on computational grids. Cluster Comput. 16(3), 421–433 (2013)CrossRefGoogle Scholar
  23. 23.
    Ren, Z., Zhang, X., Shi, W.: Resource scheduling in data-centric systems. In: Khan, S.U., Zomaya, A.Y. (eds.) Handbook on Data Centers, pp. 1307–1330. Springer, New York (2015).  https://doi.org/10.1007/978-1-4939-2092-1_46 Google Scholar
  24. 24.
    Taheri, J., Zomaya, A., Khan, S.: Grid simulation tools for job scheduling and datafile replication. In: Scalable Computing and Communications: Theory and Practice (Chap. 35), pp. 777–797. Wiley, Hoboken (2013)Google Scholar
  25. 25.
    Tang, Z., Qi, L., Cheng, Z., Li, K., Khan, S., Li, K.: An energy-efficient task scheduling algorithm in DVFS-enabled cloud environment. J. Grid Comput. 14, 55–74 (2016)CrossRefGoogle Scholar
  26. 26.
    Wang, Y.-R., Huang, K.-C., Wang, F.-J.: Scheduling online mixed-parallel workflows of rigid tasks in heterogeneous multi-cluster environments. Future Gener. Comput. Syst. 60, 35–47 (2016)CrossRefGoogle Scholar
  27. 27.
    Zhu, Z., Zhang, G., Li, M., Liu, X.: Evolutionary multi-objective workflow scheduling in cloud. IEEE Trans. Parallel Distrib. Syst. 27(5), 1344–1357 (2016)CrossRefGoogle Scholar
  28. 28.
    Zomaya, A., Khan, S.: Handbook on Data Centers. Springer, New York (2014).  https://doi.org/10.1007/978-1-4939-2092-1 Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Universidad de la RepúblicaMontevideoUruguay

Personalised recommendations