Advertisement

Eeny Meeny Miny Moe: Choosing the Fault Tolerance Technique for my Cloud Workflow

  • Leonardo Araújo de Jesus
  • Lúcia M. A. Drummond
  • Daniel de OliveiraEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 796)

Abstract

Scientific workflows are models composed of activities, data and dependencies whose objective is to represent a computer simulation. Workflows are managed by Scientific Workflow Management System (SWfMS). Such workflows commonly demand for many computational resources once their executions may involve a number of different programs processing a huge volume of data. Thus, the use of High Performance Computing (HPC) environments allied to parallelization techniques provides the support for the execution of such experiments. Some resources provided by clouds can be used to build HPC environments. Although clouds offer advantages such as elasticity and availability, failures are a reality rather than a possibility. Thus, SWfMS must be fault-tolerant. There are several types of fault tolerance techniques used in SWfMS such as checkpoint-restart and replication, but which fault tolerance technique best fits with a specific workflow? This work aims at analyzing several fault tolerance techniques in SWfMSs and recommending the suitable one for the user’s workflow using machine learning techniques and provenance data, thus improving resiliency.

References

  1. 1.
    Mattoso, M., Werner, C., Travassos, G.H., Braganholo, V., Ogasawara, E., de Oliveira, D., et al.: Towards supporting the life cycle of large scale scientific experiments. IJBPIM 5(1), 79+ (2010)CrossRefGoogle Scholar
  2. 2.
    Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman, B., Good, J.: On the use of cloud computing for scientific workflows. In: eScience 2008, pp. 640–645 (2008)Google Scholar
  3. 3.
    Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds: towards a cloud definition. SIGCOMM Rev. 39(1), 50–55 (2008)CrossRefGoogle Scholar
  4. 4.
    Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling, P.J., Mayani, R., Chen, W., da Silva, R.F., Livny, M., et al.: Pegasus, a workflow management system for science automation. FGCS 46, 17–35 (2015)CrossRefGoogle Scholar
  5. 5.
    de Oliveira, D., Ogasawara, E., Baião, F., Mattoso, M.: Scicumulus: a lightweight cloud middleware to explore many task computing paradigm in scientific workflows. In: 3rd International Conference on Cloud Computing, pp. 378–385 (2010)Google Scholar
  6. 6.
    Jackson, K.R., Ramakrishnan, L., Runge, K.J., Thomas, R.C.: Seeking supernovae in the clouds: a performance study. In: HPDC 2010, pp. 421–429. ACM, New York (2010)Google Scholar
  7. 7.
    Lee, K.-H., Lai, I.-C., Lee, C.-R.: Optimizing back-and-forth live migration. In: Proceedings of the 9th UCC, UCC 2016, pp. 49–54. ACM, New York (2016).  https://doi.org/10.1145/2996890.2996909
  8. 8.
    Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for computational tasks: a survey. Comput. Sci. Eng. 10(3), 11–21 (2008)CrossRefGoogle Scholar
  9. 9.
    Hu, M., Luo, J., Wang, Y., Veeravalli, B.: Adaptive scheduling of task graphs with dynamic resilience. IEEE Trans. Comput. 66(1), 17–23 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gu, Y., Wu, C.Q., Liu, X., Yu, D.: Distributed throughput optimization for large-scale scientific workflows under fault-tolerance constraint. J. Grid Comput. 11(3), 361–379 (2013)CrossRefGoogle Scholar
  11. 11.
    Bala, A., Chana, I.: Autonomic fault tolerant scheduling approach for scientific workflows in cloud computing. Concurr. Eng. 23(1), 27–39 (2015)CrossRefGoogle Scholar
  12. 12.
    Jain, A., Ong, S.P., Chen, W., Medasani, B., Qu, X., Kocher, M., Brafman, M., Petretto, G., Rignanese, G.-M., Hautier, G., et al.: Fireworks: a dynamic workflow system designed for high-throughput applications. Concurr. Comput. 27(17), 5037–5059 (2015)CrossRefGoogle Scholar
  13. 13.
    Elmroth, E., Hernández, F., Tordsson, J.: A light-weight grid workflow execution engine enabling client and middleware independence. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 754–761. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68111-3_79 CrossRefGoogle Scholar
  14. 14.
    von Laszewski, G., Hategan, M.: Java cog kit karajan/gridant workflow guide. Technical report, Argonne National Laboratory, Argonne, IL, USA (2005)Google Scholar
  15. 15.
    Costa, F., de Oliveira, D., Ocaña, K.A.C.S., Ogasawara, E., Mattoso, M.: Enabling re-executions of parallel scientific workflows using runtime provenance data. In: Groth, P., Frew, J. (eds.) IPAW 2012. LNCS, vol. 7525, pp. 229–232. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34222-6_22 CrossRefGoogle Scholar
  16. 16.
    Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)Google Scholar
  17. 17.
    Clark, P., Niblett, T.: The CN2 induction algorithm. Mach. Learn. 3(4), 261–283 (1989)Google Scholar
  18. 18.
    Zhang, Y., Mandal, A., Koelbel, C., Cooper, K.: Combined fault tolerance and scheduling techniques for workflow applications on computational grids. In: CC-Grid 2009, pp. 244–251. IEEE Computer Society (2009)Google Scholar
  19. 19.
    Hoheisel, A.: Grid workflow execution service-dynamic and interactive execution and visualization of distributed workflows. In: Proceedings of the Cracow Grid Workshop, vol. 2, pp. 13–24. Citeseer (2006)Google Scholar
  20. 20.
    Gärtner, F.C.: Fundamentals of fault-tolerant distributed computing in asynchronous environments. ACM CSUR 31(1), 1–26 (1999)CrossRefGoogle Scholar
  21. 21.
    Ocaña, K.A.C.S., de Oliveira, D., Ogasawara, E., Dávila, A.M.R., Lima, A.A.B., Mattoso, M.: SciPhy: a cloud-based workflow for phylogenetic analysis of drug targets in protozoan genomes. In: Norberto de Souza, O., Telles, G.P., Palakal, M. (eds.) BSB 2011. LNCS, vol. 6832, pp. 66–70. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22825-4_9 CrossRefGoogle Scholar
  22. 22.
    Saavedra-Barrera, R., Culler, D., Von Eicken, T.: Analysis of multithreaded architectures for parallel computing. In: SPAAACM 1990, pp. 169–178. ACM (1990)Google Scholar
  23. 23.
    Quinlan, J.R.: Simplifying decision trees. Int. J. Man-Mach. Stud. 27(3), 221–234 (1987)CrossRefGoogle Scholar
  24. 24.
    Ogasawara, E., Dias, J., Silva, V., Chirigati, F., de Oliveira, D., Porto, F., Valduriez, P., Mattoso, M.: Chiron: a parallel engine for algebraic scientific workflows. Concurr. Comput. 25(16), 2327–2341 (2013)CrossRefGoogle Scholar
  25. 25.
    Di, S., Robert, Y., Vivien, F., Kondo, D., Wang, C.-L., Cappello, F.: Optimization of cloud task processing with checkpoint-restart mechanism. In: 2013 International Conference for High Performance Computing, Networking, Storage and Analysis (SC), pp. 1–12. IEEE (2013)Google Scholar
  26. 26.
    Young, J.W.: A first order approximation to the optimum checkpoint interval. Commun. ACM 17(9), 530–531 (1974)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Leonardo Araújo de Jesus
    • 1
  • Lúcia M. A. Drummond
    • 1
  • Daniel de Oliveira
    • 1
    Email author
  1. 1.Instituto de ComputaçãoUniversidade Federal Fluminense (UFF)NiteróiBrazil

Personalised recommendations