Advertisement

A Fast GPU Convolution/Superposition Method for Radiotherapy Dose Calculation

  • Diego CarrascoEmail author
  • Pablo Cappagli
  • Flavio D. Colavecchia
Conference paper
  • 557 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 796)

Abstract

An algorithm based on Convolution/Superposition with collapsed cone approximation was developed for radiotherapy dose calculation, reducing numerical complexity and enabling a high accuracy computation in a dense grid. By analyzing the specific integrals and reducing them into a ray tracing problem, we show that both calculation and data evaluations can be mapped to specific and optimized memories types in the GPU. Using constant memory and texture fetches in the algorithm, an 144X speedup is obtained compared to an equivalent multi-threaded CPU code, without precision loss. The developed software is the foundation for a high performance calculation system with a fidelity equivalent to commercial planning systems and with a few seconds of execution.

Keywords

GPU Convolution Superposition Dose Radiotherapy 

References

  1. 1.
    Cowley, J.: Diffraction Physics. Elsevier, Amsterdam (1995)Google Scholar
  2. 2.
    Ahnesjö, A., Aspradakis, M.: Dose calculations for external photon beams in radiotherapy. Phys. Med. Biol. 44(11), R99 (1999)CrossRefGoogle Scholar
  3. 3.
    Ahnesjö, A., Andreo, P., Brahme, A.: Calculation and application of point spread functions for treatment planning with high energy photon beams. Acta Oncol. 26, 49–56 (1997)CrossRefGoogle Scholar
  4. 4.
    Fippel, M., Haryanto, F., Dohm, O., Nüsslin, F., Kriesen, S.: A virtual photon energy fluence model for Monte Carlo dose calculation. Med. Phys. 30, 301–311 (2003)CrossRefGoogle Scholar
  5. 5.
    Childress, N., Stephens, E., Eklund, D., Zhang, M.: Mobius3D white paper: dose calculation algorithm. Mobius Med. Syst. (2012)Google Scholar
  6. 6.
    Ahnesjö, A.: Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med. Phys. 16, 577–592 (1989)CrossRefGoogle Scholar
  7. 7.
    Batho, H.: Lung corrections in cobalt 60 beam therapy. J. Can. Assoc. Radiol. 15, 79 (1964)Google Scholar
  8. 8.
    Vanderstraeten, B., Reynaert, N., Paelinck, L., Madani, I., De Wagter, C., De Gersem, W., De Neve, W., Thierens, H.: Accuracy of patient dose calculation for lung IMRT: a comparison of Monte Carlo, convolution/superposition, and pencil beam computations. Med. Phys. 33, 3149–3158 (2006)CrossRefGoogle Scholar
  9. 9.
    Lu, W., Olivera, H., Chen, M., Reckwerdt, P., Mackie, T.: Accurate convolution/superposition for multi-resolution dose calculation using cumulative tabulated kernels. Phys. Med. Biol. 50, 655 (2005)CrossRefGoogle Scholar
  10. 10.
    Jacques, R., Wong, J., Taylor, R., McNutt, T.: Real-time dose computation: GPU-accelerated source modeling and superposition/convolution. Med. Phys. 38, 294–305 (2011)CrossRefGoogle Scholar
  11. 11.
    Chen, Q., Chen, M., Lu, W.: Ultrafast convolution/superposition using tabulated and exponential kernels on GPU. Med. Phys. 38, 1150–1161 (2011)CrossRefGoogle Scholar
  12. 12.
    Xiao, K., Chen, D., Hu, X., Zhou, B.: Efficient implementation of the 3D-DDA ray traversal algorithm on GPU and its application in radiation dose calculation. Med. Phys. 39, 7619–7625 (2012)CrossRefGoogle Scholar
  13. 13.
    Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with CUDA. Queue 6, 40–53 (2008)CrossRefGoogle Scholar
  14. 14.
    Low, D., Harms, W., Mutic, S., Purdy, J.: A technique for the quantitative evaluation of dose distributions. Med. Phys. 25, 656–661 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Diego Carrasco
    • 1
    Email author
  • Pablo Cappagli
    • 2
  • Flavio D. Colavecchia
    • 1
    • 3
  1. 1.Laboratorio de Física Médica Computacional, Centro Integral de Medicina Nuclear y Radioterapia de BarilocheComisión Nacional de Energía AtómicaBuenos AiresArgentina
  2. 2.Centro Atómico BarilocheComisión Nacional de Energía AtómicaBuenos AiresArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina

Personalised recommendations