Advertisement

Support Vector Machine Acceleration for Intel Xeon Phi Manycore Processors

  • Renzo MassobrioEmail author
  • Sergio Nesmachnow
  • Bernabé Dorronsoro
Conference paper
  • 559 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 796)

Abstract

Support vector machines are widely used for classification and regression tasks. However, sequential implementations for support vector machines are usually unable to deal with the increasing size of current real-world learning problems. In this context, Intel®Xeon PhiTM processors allow easily incorporating high performance computing strategies to improve execution times. This article proposes a parallel implementation of the popular LIBSVM library, specially adapted to the Intel®Xeon PhiTM architecture. The proposed implementation is evaluated using publicly available datasets corresponding to classification and regression tasks. Results show that the proposed parallel version computes the same results than the original LIBSVM while reducing the time needed for training by up to a factor of 4.81.

Notes

Acknowledgement

The work of R. Massobrio and S. Nesmachnow was partly supported by PEDECIBA and ANII, Uruguay. R. Massobrio would like to thank ANII, Uruguay and Fundación Carolina, Spain. B. Dorronsoro would like to acknowledge the Spanish MINECO-FEDER for the support provided under contracts TIN2014-60844-R (the SAVANT project) and RYC-2013-13355.

References

  1. 1.
    Athanasopoulos, A., Dimou, A., Mezaris, V., Kompatsiaris, I.: GPU acceleration for support vector machines. In: Proceedings of the 12th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS) (2011)Google Scholar
  2. 2.
    Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT 1992, pp. 144–152. ACM, New York (1992)Google Scholar
  3. 3.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). http://www.csie.ntu.edu.tw/~cjlin/libsvm CrossRefGoogle Scholar
  4. 4.
    Chang, C.C., Lin, C.J.: LIBSVM FAQ (2015). Accessed 14 July 2017. http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html#f432
  5. 5.
    Fu, H., Liao, J., Yang, J., Wang, L., Song, Z., Huang, X., Yang, C., Xue, W., Liu, F., Qiao, F., Zhao, W., Yin, X., Hou, C., Zhang, C., Ge, W., Zhang, J., Wang, Y., Zhou, C., Yang, G.: The Sunway TaihuLight supercomputer: system and applications. Sci. China Inf. Sci. 59(7), 072001 (2016)CrossRefGoogle Scholar
  6. 6.
    Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: a call graph execution profiler. SIGPLAN Not. 17(6), 120–126 (1982)CrossRefGoogle Scholar
  7. 7.
    Guyon, I., Gunn, S., Hur, A.B., Dror, G.: Result analysis of the NIPS 2003 feature selection challenge. In: Proceedings of the 17th International Conference on Neural Information Processing Systems, NIPS 2004, pp. 545–552. MIT Press, Cambridge (2004)Google Scholar
  8. 8.
    Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification (2003). Accessed 14 July 2017. https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
  9. 9.
    Hull, J.J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (1994)CrossRefGoogle Scholar
  10. 10.
    Intel®Software: Intel®Math Kernel Library Link Line Advisor (2017). Accessed 14 July 2017. https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
  11. 11.
    Ivanciuc, O.: Applications of Support Vector Machines in Chemistry, pp. 291–400. Wiley, Hoboken (2007)Google Scholar
  12. 12.
    Kogan, S., Levin, D., Routledge, B.R., Sagi, J.S., Smith, N.A.: Predicting risk from financial reports with regression. In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, NAACL 2009, pp. 272–280. Association for Computational Linguistics, Stroudsburg (2009)Google Scholar
  13. 13.
    Lichman, M.: UCI machine learning repository (2013). Accessed 14 July 2017. http://archive.ics.uci.edu/ml
  14. 14.
    Sodani, A., Gramunt, R., Corbal, J., Kim, H.S., Vinod, K., Chinthamani, S., Hutsell, S., Agarwal, R., Liu, Y.C.: Knights landing: second-generation Intel Xeon Phi product. IEEE Micro 36(2), 34–46 (2016)CrossRefGoogle Scholar
  15. 15.
    TOP500.org: Top500 List - June 2017 (2017). Accessed 14 July 2017. https://www.top500.org/list/2017/06/
  16. 16.
    Wang, E., Zhang, Q., Shen, B., Zhang, G., Lu, X., Wu, Q., Wang, Y.: Intel math kernel library. High-Performance Computing on the Intel® Xeon Phi™, pp. 167–188. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06486-4_7 Google Scholar
  17. 17.
    You, Y., Song, S.L., Fu, H., Marquez, A., Dehnavi, M.M., Barker, K., Cameron, K.W., Randles, A.P., Yang, G.: MIC-SVM: designing a highly efficient support vector machine for advanced modern multi-core and many-core architectures. In: 2014 IEEE 28th International Parallel and Distributed Processing Symposium, pp. 809–818 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Renzo Massobrio
    • 1
    • 2
    Email author
  • Sergio Nesmachnow
    • 1
  • Bernabé Dorronsoro
    • 2
  1. 1.Universidad de la RepúblicaMontevideoUruguay
  2. 2.Universidad de CádizCádizSpain

Personalised recommendations